Cho 4a> b> 0 và 4a2 + b2 = 5ab
Tính C= \(\frac{4ab}{4a^2-b^2}\)
Rút gọn các biểu thức sau:
a) A = 4 a + b a 2 − 4 ab + 4 a − b a 2 + 4 ab . a 2 − 16 b 2 a 2 + b 2 với x ≠ 0 và x ≠ ± 3
b) B = t t + 2 + 1 : 1 − 3 t 2 4 − t 2 với t ≠ ± 1 và t ≠ ± 2
a) Ta có A = 8 ( a 2 + b 2 ) a ( a 2 − 16 b 2 ) . a 2 − 16 b 2 a 2 + b 2 = 8 a
b) Ta có B = 2 t + 2 t + 2 . 4 − t 2 4 − 4 t 2 = 2 − t 2 − 2 t
Cho 4a2-15ab+3b2=0,b≠4a, b≠-4a. Tính giá trị của biểu thức:T=\(\dfrac{5a-b}{4a-b}\)+\(\dfrac{3b-2a}{4a+b}\)
Cho a,b>0 tm a+b=4ab Cm \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Từ \(a+b=4ab\Leftrightarrow\frac{1}{a}+\frac{1}{b}=4\)
\(\left(\frac{1}{a};\frac{1}{b}\right)\rightarrow\left(x;y\right)\)\(\Rightarrow\hept{\begin{cases}x+y=4\\\frac{x^2}{4y+x^2y}+\frac{y^2}{4x+xy^2}\ge\frac{1}{2}\end{cases}}\)
C-S: \(VT\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy\left(x+y\right)}\)\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}}=\frac{1}{2}\)
cho a,b>0 thỏa mãn a+b=4ab. CMR
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống
cho a,b và c thỏa mãn 2a+b+c=-1
hãy tính giá trị biểu thức:P=4a2+b2+c2+4ab+4ac+2ab
Lời giải:
$P=4a^2+b^2+c^2+4ab+4ac+2bc=(2a+b+c)^2=(-1)^2=1$
Cho a,b>0 tm: a+b=4ab
CMR: \(\frac{\sqrt{a^2+4b^2}}{ab}+\frac{\sqrt{b^2+4a^2}}{ab}\ge4\sqrt{5}\)
cho a,b >0 , a+b=4ab
CMR:\(\frac{a}{4b^2+1}\)+\(\frac{b}{4a^2+1}\)≥\(\frac{1}{2}\)
\(a+b=4ab\Rightarrow\frac{1}{a}+\frac{1}{b}=4\Rightarrow4\ge\frac{4}{a+b}\Rightarrow a+b\ge1\)
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a\left(4b^2+1\right)-4ab^2}{4b^2+1}+\frac{b\left(4a^2+1\right)-4a^2b}{4a^2+1}\)
\(=a-\frac{4ab^2}{4b^2+1}+b-\frac{4a^2b}{4a^2+1}\)
\(=a+b-\left(\frac{ab^2}{4b^2+1}+\frac{4a^2b}{4a^2+1}\right)\)
\(\ge a+b-\left(\frac{4ab^2}{4b}+\frac{4a^2b}{4a}\right)=a+b-2ab\)
Ta có: \(\left(a+b\right)^2\ge4ab\Rightarrow-\frac{\left(a+b\right)^2}{2}\le-2ab\)
\(\Rightarrow a+b-2ab\ge a+b-\frac{\left(a+b\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\("="\Leftrightarrow a=b=\frac{1}{2}\)
Cho a,b thỏa mãn \(4a^2+b^2+4ab-4a-6b+1=0\)
Tìm Min, Max của P=2a+b
Cho 4a2-4ab+b2=ab
và 2a>b>0.
Tìm M=\(\dfrac{ab}{4a^2-b^2}\)