Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
123445566

cho a,b >0 , a+b=4ab

CMR:\(\frac{a}{4b^2+1}\)+\(\frac{b}{4a^2+1}\)\(\frac{1}{2}\)

Hanako-kun
27 tháng 6 2020 lúc 19:19

\(a+b=4ab\Rightarrow\frac{1}{a}+\frac{1}{b}=4\Rightarrow4\ge\frac{4}{a+b}\Rightarrow a+b\ge1\)

\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a\left(4b^2+1\right)-4ab^2}{4b^2+1}+\frac{b\left(4a^2+1\right)-4a^2b}{4a^2+1}\)

\(=a-\frac{4ab^2}{4b^2+1}+b-\frac{4a^2b}{4a^2+1}\)

\(=a+b-\left(\frac{ab^2}{4b^2+1}+\frac{4a^2b}{4a^2+1}\right)\)

\(\ge a+b-\left(\frac{4ab^2}{4b}+\frac{4a^2b}{4a}\right)=a+b-2ab\)

Ta có: \(\left(a+b\right)^2\ge4ab\Rightarrow-\frac{\left(a+b\right)^2}{2}\le-2ab\)

\(\Rightarrow a+b-2ab\ge a+b-\frac{\left(a+b\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\("="\Leftrightarrow a=b=\frac{1}{2}\)


Các câu hỏi tương tự
A Lan
Xem chi tiết
tran duc huy
Xem chi tiết
dbrby
Xem chi tiết
oooloo
Xem chi tiết
dbrby
Xem chi tiết
Anh Đỗ Nguyễn Thu
Xem chi tiết
Easylove
Xem chi tiết
trần trang
Xem chi tiết
Anh Đỗ Nguyễn Thu
Xem chi tiết