Cho \(\dfrac{a}{3}\)=\(\dfrac{b}{5}\).Tính giá trị biểu thức C=\(\dfrac{5a^2+3b^2}{10a^2-3b^2}\)
Cho \(\dfrac{a}{3}\)=\(\dfrac{b}{5}\).Tính giá trị biểu thức C=\(\dfrac{5a^2+3b^2}{10a^2-3b^2}\)
Tính giá trị biểu thức:: B=5a^2+3b^2 / 10a^2-3b^2 với a/3=b/5
Đặt a/3=b/5=k
=>a=3k; b=5k
\(B=\dfrac{5\cdot9k^2+3\cdot25k^2}{10\cdot9k^2-3\cdot25k^2}=8\)
cho ba số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
Cho ba số thực dương a,b,c thỏa mãn ab+bc+ca = 3abc. Tìm giá
trị lớn nhất của biểu thức T = \(\sqrt{\dfrac{a}{3b^2c^2+abc}}+\sqrt{\dfrac{b}{3b^2c^2+abc}}+\sqrt{\dfrac{c}{3a^2b^2+abc}}\)
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)
Lúc mình đọc lời giải kia của bạn thì mình thấy cũng hợp lí nhưng mà Cô-si hơi nhầm tí ở chỗ \(\dfrac{1}{z+x}+\dfrac{1}{z+y}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt{\left(z+x\right)\left(z+y\right)}}\) ấy.
Nên là mình cũng dựa trên ý tưởng của bạn nhưng sửa \(\dfrac{1}{2}\) thành 2 thì mới đúng được
Không thì bạn cứ kiểm tra bằng cách thay điểm rơi \(a=b=c=1\) vào T thì nó ra \(\dfrac{3}{2}\) ngay chứ không ra 6 đâu.
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh:
1) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
2) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
\(\Rightarrow dpcm\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk; c=dk$. Khi đó:
1.
$\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b(k+1)}{b}=k+1(1)$
$\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d(k+1)}{d}=k+1(2)$
Từ $(1); (2)\Rightarrow \frac{a+b}{b}=\frac{c+d}{d}$
2.
$\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}(3)$
$\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}(4)$
Từ $(3); (4)\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}$ (đpcm)
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Bài 1: Đơn giản biểu thức rồi tìm giá trị
a, 3(2a-1)+5(3-a) tại a=\(\dfrac{-3}{2}\)
b, 25x-4(3x-1)+7(5-2x) tại x=2,1
c, 12(2-3b)+35b-9(b+1) tại b=\(\dfrac{1}{2}\)
d,4a\(^2\)-2(10a-1)+4a(2-a\(^2\)) tại a= -0,2
\(a,a=-\dfrac{3}{2}\)
\(\Rightarrow3\left[2\left(-\dfrac{3}{2}\right)-1\right]+5\left(3+\dfrac{3}{2}\right)=3.\left(-3-1\right)+5.\dfrac{9}{2}=-12+\dfrac{45}{2}=\dfrac{21}{2}\)
\(b,x=2,1\)
\(\Rightarrow25.2,1-4\left(3.2,1-1\right)+7\left(5-2.2,1\right)=52,5-4.5,3+7.0,8=36,9\)
\(c,b=\dfrac{1}{2}\)
\(\Rightarrow12\left(2-3.\dfrac{1}{2}\right)+35.\dfrac{1}{2}-9\left(\dfrac{1}{2}+1\right)=12.\dfrac{1}{2}+\dfrac{35}{2}-9.\dfrac{3}{2}=6+\dfrac{35}{2}-\dfrac{27}{2}=10\)
\(d,a=-0,2\)
\(\Rightarrow4.\left(-0,2\right)^2-2\left(10.\left(-0,2\right)-1\right)+4.\left(-0,2\right)\left(2-\left(-0,2\right)^2\right)\)
\(=4.0,04-2.\left(-3\right)-0,8.1,96\)
\(=0,16+6-1,568\)
\(=4,592\)
a: A=6a-3+15-5a=a+12
Khi a=-3/2 thì A=-3/2+12=10,5
b: B=25x-12x+4+35-8x=5x+39
Khi x=2,1 thì B=10,5+39=49,5
c: C=24-6b+35b-9b-9=20b+15
Khi b=0,5 thì C=10+15=25
d: D=4a^2-20a+2+8a-4a^3=-4a^3+4a^2-12a+2
Khi a=-0,2 thì
D=-4*(-1/5)^3+4*(-1/5)^2-12*(-1/5)+2=4,592
1) So sánh :
a) \(3^{2^3}\) và (32)3 b) (-8)9 và (-32)5 c) 221 và 314
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng :
a)\(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\) b) \(\dfrac{ab}{cd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Mk săpp thi rồi nên hơi nhiều bài mong mn giúp mk !!!
\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)
\(a,\) Áp dụng tcdtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)
Chứng minh các đẳng thức sau:
a.\(\dfrac{3a^2-10a+3}{2\left(a-3\right)}=\dfrac{3}{2}a-\dfrac{1}{2}\)với a≠3
b.\(\dfrac{b^2+3b+9}{b^3-27}=\dfrac{b-2}{b^2-5b+6}với\) b≠2 và b≠3
giúp mik với mik đang cần gấp
a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)
\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)
\(=\dfrac{3a-1}{2}\)
\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)
b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)
\(=\dfrac{1}{b-3}\)
\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)
\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)