tinh gia tri cua bieu thuc B=1.2.3+2.3.4+3.4.5+5.6.7+...+17.18.19
Tinh gia tri cac bieu thuc sau
D= \(\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(D=\frac{30}{1.2.30}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(=15.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=15.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=15.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=15.\frac{8249}{9900}=\frac{8249}{660}\)
\(D=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(=15\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=15\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=15\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=15.\frac{4949}{9900}=\frac{4949}{660}\)
Vậy \(D=\frac{4949}{660}\).
\(D=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(D=15.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(D=15.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(D=15.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(D=15.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(D=15.\frac{4949}{9900}\)
\(D=\frac{4949}{660}\)
Tinh gia tri cua A biet 1.2.3+2.3.4+3.4.5+.....+98.99+99.100
Đáp án là
99 x 100 x 101 = 999900
Vậy A = 999900
Tinh gia tri cua A biet 1.2.3+2.3.4+3.4.5+......+98.99+99.100
Bạn ghi bị lộn đề rồi, hai số cuối phải là \(97.98.99\)và \(98.99.100\)
\(4A=1.2.3.4+2.3.4.4+3.4.5.4+...+97.98.99.4+98.99.100.4\)
\(=1.2.3.4+2.3.4\left(5-1\right)+3.4.5\left(6-2\right)+...+97.98.99\left(100-96\right)+98.99.100.\left(101-97\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100\)
\(=98.99.100.101=97990200\Rightarrow A=\frac{97990200}{4}=24497550\)
\(\frac{\left(1.2+2.3+3.4+.....+98.99\right)y}{1}=184800\) tim y
2\ \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....\frac{1}{37.38.39}\right).1428+185,8\) tinh gia tri cua bieu thuc tren
1) Đặt \(A=1.2+2.3+3.4+....+98.99\)
Ta có:\(3A=3.\left(1.2+2.3+3.4+....+98.99\right)\)
\(3A=1.2.3+2.3.3+3.4.3+....+98.99.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(3A=98.99.100\Rightarrow A=\frac{98.99.100}{3}=323400\)
Ta có:\(\frac{A.y}{1}=184800\Rightarrow y=184800:323400=\frac{4}{7}\)
2)Đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185,8\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{37.38.39}\)
Tổng quát:\(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right)a}-\frac{1}{a\left(a+1\right)}\)
Ta có:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{37.38.39}\)
\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\Rightarrow B=\frac{370}{741}:2=\frac{185}{741}\)
Khi đó \(A=\frac{185}{741}.1428+185,8=...........\) (tự tính ra)
(*)số ko đẹp mấy
1.2.3+3.4.5+5.6.7+......+17.18.19
1.2.3+3.4.5+5.6.7+....+17.18.19
Tính B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19
Ta có: B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19
=> 4B = 4(1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19)
=> 4B = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...... +17.18.19.4
=> 4B = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2) +..... +17.18.19.(20 - 16)
=> 4B = 1.2.3.4 + 2.3.4.5 - 2.3.4 + 3.4.5.6 - 2.3.4.5 + ..... + 17.18.19.20 - 16.17.18.19
=> 4B = 17.18.19.20
=> 4B = 116280
=> B = 29070
VÌ SAO GHI 4A ? DÙNG BẦNG CÁCH NÀO ĐỂ BIẾT HẢ MỌI NGƯỜI CHIT MÌNH VỚI !!! MÌNH CẦN GẤP !!!
kieu mo mau no the(dung hoi vi sao)?
1.2.3.
=>tiep theo la 4
Khi gặp dạng như thế này, ta xét số hạng như thế này thì ta sẽ có được số cần nhân chính là số liền sau của số cuối cùng trong tích đó. Nói dễ hiểu hơn là nếu có A = 1.2 + 2.3 + 3.4 +... thì ta xét số hạng đầu tiên của tổng là 1.2 thì ta có số liền sau của 2 là 3. Vậy nên nhân A cho 3. Cái này gọi là quy luật để giải quyết bài toán kiểu này rồi.
Ta có: B = 1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19
=> 4B = 4(1.2.3 + 2.3.4 + 3.4.5 + ... + 17.18.19)
=> 4B = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...... +17.18.19.4
=> 4B = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2) +..... +17.18.19.(20 - 16)
=> 4B = 1.2.3.4 + 2.3.4.5 - 2.3.4 + 3.4.5.6 - 2.3.4.5 + ..... + 17.18.19.20 - 16.17.18.19
=> 4B = 17.18.19.20
=> 4B = 116280
=> B = 29070
tính B biết B=1/1.2.3+1/2.3.4+1/3.4.5+...+1/17.18.19
\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{17\cdot18\cdot19}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{17\cdot18}-\dfrac{1}{18\cdot19}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{342}\right)=\dfrac{1}{2}\cdot\dfrac{85}{171}=\dfrac{85}{342}\)
1.2.3+2.3.4+3.4.5+...+17.18.19+18.19.20
Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + 17 . 18 . 19 + 18 . 19 . 20
=> 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 4 + 3 . 4 . 5 . 4 + ... + 17 . 18 . 19 . 4 + 18 . 19 . 20 . 4
4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . ( 5 - 1 ) + 3 . 4 . 5 . ( 6 - 2 ) + ... + 17 . 18 . 19 . ( 20 - 16 ) + 18 . 19 . 20 . ( 21 - 17 )
4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 1 . 2 . 3 . 4 + 3 . 4 . 5 . 6 - 2 . 3 . 4 . 5+ ... + 17.18.19.20 - 16.17.18.19 + 18.19.20.21 -17.18.19.20
4A = 18 . 19 . 20 . 21
=> A = 18 . 19 . 20 . 21 : 4
A = 35 910
Đặt M = 1.2.3+2.3.4 + 3.4.5+...+17.18.19+18.19.20
=> 4M = 1.2.3.4+2.3.4.4+3.4.5.4+...+17.18.19.4+18.19.20
4M = 1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+...+17.18.19.(20-16)+18.19.20.(21-17)
4M = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ...+17.18.19.20 - 16.17.18.19 + 18.19.20.21 - 17.18.19.20
4M = ( 1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ...+ 17.18.19.20+18.19.20.21) - (1.2.3.4+2.3.4.5+...+16.17.18.19+17.18.19.20)
4M = 18.19.20.21
\(M=\frac{18.19.20.21}{4}\)