Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Ánh
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 17:55

a)Áp dụng Bđt Cô si ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Cộng theo vế 2 bđt trên ta có:

\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu = khi a=b=c

b)Áp dụng Bđt Cô-si ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)

Cộng theo vế 3 bđt trên ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Đấu = khí a=b=c

 

Lightning Farron
10 tháng 11 2016 lúc 17:56

bn sử đấu = khí dấu = khi nhé

Blue Frost
Xem chi tiết
Nguyễn Hưng Phát
16 tháng 7 2018 lúc 13:58

Bất đẳng thức cần chứng minh tương đương với:

\(a^3b^2-a^2b^3+b^3c^2-c^3b^2+c^3a^2-c^2a^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b+b-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+c^2a^2\left(b-a\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a^2b^2-c^2a^2\right)\left(a-b\right)+\left(b^2c^2-c^2a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow a^2\left(b^2-c^2\right)\left(a-b\right)+c^2\left(b^2-a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left(a^2b+a^2c-c^2a-c^2b\right)\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a\left(ab-c^2\right)+c\left(a^2-bc\right)\right]\left(a-b\right)\left(b-c\right)\ge0\) luôn đúng do \(a\ge b\ge c\ge0\)

Blue Frost
16 tháng 7 2018 lúc 14:13

cảm ơn bạn nhá, bạn trả lời giúp mình mấy câu hỏi về BĐT còn lại của mik đc ko? cảm ơn bn nhiều!

Minh Hiếu
Xem chi tiết
Lê Nhật Phương
Xem chi tiết
Trung Nguyen
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2020 lúc 21:21

Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)

\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế:

\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)

Lại có:

\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Blue Frost
Xem chi tiết
Thanh Tùng DZ
16 tháng 5 2020 lúc 17:49

BĐT tương đương với :

\(3a^4+3b^4+3c^4-\left(a^4+a^3b+a^3c+b^4+ab^3+b^3c+ac^3+bc^3+c^4\right)\ge0\)

\(\Leftrightarrow\left(a^4+b^4-a^3b-ab^3\right)+\left(b^4+c^4-b^3c-bc^3\right)+\left(a^4+c^4-a^3c-ac^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)+\left(b-c\right)^2\left(b^2+bc+c^2\right)+\left(a-c\right)^2\left(a^2+ac+c^2\right)\ge0\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
28 tháng 5 2020 lúc 10:43

BĐT cần chứng minh tương đương với:

\(3a^4+3b^4+3c^4\ge a^4+b^4+c^4+ab^3+bc^3+ca^3+a^3b+b^3c+c^3a\)

\(\Leftrightarrow2a^4+2b^4+2c^4-ab^3-bc^3-ca^3-a^3b-b^3c-c^3a\ge0\)

Theo AM - GM ta dễ có:

\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)

\(b^4+b^4+b^4+c^4\ge4\sqrt[4]{b^{12}c^4}=4b^3c\)

\(c^4+c^4+c^4+a^4\ge4\sqrt[4]{c^{12}a^4}=4c^3a\)

Cộng vế theo vế ta có đpcm

Khách vãng lai đã xóa
le thi khanh huyen
Xem chi tiết
Phạm Tuấn Đạt
14 tháng 8 2018 lúc 10:14

Xét \(2\left(a+b+c\right)=2a+2b+2c=\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\)

Áp dụng bđt cosi cho 3 bộ số ta có :

\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(Dấu "=" xảy ra khi a = b = c)

\(\Rightarrow2\left(a+b+c\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\Rightarrow a+b+c\ge\frac{3}{2}\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\RightarrowĐPCM\)

Minh Anh
Xem chi tiết
Nguyễn Thiều Công Thành
31 tháng 10 2016 lúc 18:40

cái áp dụng là Schawrts chứ

tth_new
12 tháng 8 2020 lúc 8:39

BĐT sau đây vẫn đúng: \(\Sigma a\left(a-c\right)\left(a-b\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)+\frac{16\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b+c\right)^3}\)

Khách vãng lai đã xóa