Cho:\(a\ge b\ge c\ge0.CMR:a^3b^2+b^3c^2+c^3a^2\ge a^2b^3+b^2c^3+c^2a^3\)
\(Cho:a,b,c\ge0.CMR:3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
Let \(a,b,c\ge0\) such that \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ne0\) . Prove that:
\(a^3+b^3+c^3+3abc-ab\left(a+b\right)-bc\left(b+c\right)-ca\left(c+a\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)\)
Cho a;b;c\(\ge0\).Chứng minh rằng \(\frac{a^3}{b\left(b+c\right)}+\frac{b^3}{c\left(c+a\right)}+\frac{c^3}{a\left(a+b\right)}\ge\frac{1}{2}\left(a+b+c\right)\)
Cho a;b;c \(\ge0\).CMR \(\frac{a^3}{b\left(b+c\right)}+\frac{b^3}{c\left(c+a\right)}+\frac{c^3}{a\left(a+b\right)}\)\(\ge\frac{1}{2}\left(a+b+c\right)\)
Chứng minh rằng
a) \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\) với a, b > 0
b) \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\)với a, b, c > 0
c) \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)với \(a,b,c\ge0\)
Cho \(a,b,c\ge0\) . Tìm hệ số k tốt nhất thoả mãn đẳng thức sau:
\(\frac{a^3}{2a+b+c}+\frac{b^3}{2b+c+a}+\frac{c^2}{2c+b+a}+\frac{k\left(a+b+c\right)abc}{ab+bc+ca}\ge\left(\frac{1}{4}+\frac{k}{3}\right)\left(a^2+b^2+c^2\right)\)
CMR:
a,\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{2}\)
b,Cho a+b=1,a>0,b>0 CMR:\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)\(\ge9\)
CMR: \(\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{1}{1+ab}\forall a,b\ge0\)
usechatgpt init success