Tìm n thuộc N,sao cho các phân số sau có giá trị nguyên
a.n+4/n
b.n/n-2
c.n-2/4
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
| 3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
| n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
| n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
| n | 4 | 2 | 6 | 0 | 12 | -6 |
Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên:
\(\dfrac{4}{n+2}\) (n\(\ne\)-2)
Với n≠-2,n∈Z. Để 4/n+2 có giá trị là số nguyên thì 4⋮n+2
⇒n+2 ∈ Ư(4)={1;2;4;-1;-2;-4}
Nếu n+2=1⇒n=-1(TMĐK)
Nếu n+2=2⇒n=0(TMĐK)
Nếu n+2=4⇒n=2(TMĐK)
Nếu n+2=-1⇒n=-3(TMĐK)
Nếu n+2=-2⇒n=-4(TMĐK)
Nếu n+2=-4⇒n=-6(TMĐK)
Vậy với n ∈ {-1;0;2;-3;-4;-6} thì 4/n+2 có giá trị nguyên.
Tìm các số nguyên x sao cho các phân số sau có giá trị là một số nguyên:
a)n+4/1
b)n-2/4
c)6/n-1
d)n/n-2
a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên
b) \(\dfrac{n-2}{4}\) là một số nguyên khi:
\(n-2\) ⋮ 4
⇒ n - 2 ∈ B(4)
⇒ n ∈ B(4) + 2
c) \(\dfrac{6}{n-1}\) là một số nguyên khi:
6 ⋮ n - 1
\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)
d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)
Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:
\(\Rightarrow\text{2}\) ⋮ n - 2
\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0\right\}\)
tìm n thuộc z sao cho các phân số sau có giá trị nguyên :
a)4/n b)n+6/n c)n-1/8 d)n+3/n-4
^_^ giúp mik nke các bn !!!!!
Cho phân số B=n/n-4 ( n thuộc Z, n khác 4 ) Tìm tất cả các giá trị nguyên của n để B có giá trị nguyên
\(B=\dfrac{n}{n-4}=\dfrac{n-4+4}{n-4}=1+\dfrac{4}{n-4}\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
| n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
| n | 5 | 3 | 6 | 2 | 8 | 0 |
\(B=\dfrac{n}{n-4}=\dfrac{n-4+4}{n-4}=1+\dfrac{4}{n-4}\)
\(Để.B\in Z\Rightarrow\dfrac{4}{n-4}\in Z\Rightarrow n-4\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
tìm n thuộc z để các phân số sau có giá trị nguyên -12/n 15/n-2 8/n+1 A = 3n-5/n+4
Tìm n thuộc Z để các phân số sau đồng thời có giá trị nguyên
-8/n;13/n-1/;4/n+2
Bài 4: Tìm các số nguyên n sao cho các phân số sau có giá trị là số nguyên
a) n + 4/n + 3
b) n - 1/n - 3
a) n + 4/ n + 3 là số nguyên
=> n + 4 chia hết n + 3
=> (n + 3) + 1 chia hết n + 3
=> n + 3 chia hết n + 3 và 1 chia hết n + 3
=> n + 3 thuộc ước của 1 = ( 1:-1)
ta có bảng n+ 3 1 -1
n -2 -4
b) n-1/n-3 là một số nguyên
=> n – 1 chia hết n – 3
=> (n – 3) + 2 chia hết n – 3
=>n-3 chia hết n - 3 và 2 chia hết n - 3
=> n – 3 thuộc ước của 2(1;-1;2;-2)
Ta có bảng
n-3 1 -1 2 -2
n 4 2 5 1
Cho phân số A = 𝑛 + 4 / 𝑛 − 2 với n thuộc Z
a) Tìm điều kiện của n để phân số A có nghĩa
b) Tính giá trị của A khi n = 0, n = -2, n = 4
c) Tìm tất cả các giá trị nguyên của n để A là số nguyên
a, đk : n khác 2
b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)
Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
| n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
| n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
a: Để phân số A có nghĩa thì n-2<>0
hay n<>2
b: Thay n=0 vào A, ta được:
\(A=\dfrac{0+4}{0-2}=-2\)
Thay n=-2 vào A, ta được:
\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Thay n=4 vào A, ta được:
\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
a) Để A là phân số thì n ∈ Z và n ≠ 2 .
b) Khi n = 0 thì A = \(\dfrac{0 + 4}{ 0 - 2}\) = \(\dfrac{4}{-2}\) = -2 .
Khi n = -2 thì A = \(\dfrac{ -2 + 4 }{ -2 - 2} \) = \(\dfrac{2}{-4}\) = \(\dfrac{-1}{2}\)
Khi n = 4 thì A = \(\dfrac{ 4 + 4}{ 4 - 2}\) = \(\dfrac{8}{2}\) = 4
c) Để A = \(\dfrac{ n + 4}{ n - 2}\) nguyên
➙ \(\dfrac{ n - 2 + 6}{ n -2 } \) nguyên
➙ \(\dfrac{ n - 2 }{ n - 2 } + \dfrac{ 6}{ n - 2 } = 1 + \dfrac{ 6 }{ n - 2 }\) nguyên
➙ \(\dfrac{6}{ n - 2 }\) nguyên
➙ n - 2 ∈ Ư( 6 ) = { ±1;±2;±3;±6}
Lập bảng :
| n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
| n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
Vậy n ∈ { 3 ; ±1 ; ±4 ; 0 ; 5 ; 8 }