Cho tam giác MNP, có góc M = 50°, góc N = 40°, kẻ PQ vuông góc với MN. Vẽ hình và tính MPQ và NPQ
Cho tam giác MNP có đường cao PQ (Hình 17).
a) Viết công thức tính PQ theo cạnh n và góc a; công thức tính PQ theo cạnh m và góc b
b) Viết công thức tính diện tích mỗi tam giác MPQ, NPQ, MNP theo các cạnh m, n và các cạnh m, n và các góc a, b, a + b
c) Sử dụng kết quả: \({S_{MPN}} = {S_{MPQ}} + {S_{NPQ}}\), hãy tìm công thức tính \(\sin \left( {a + b} \right)\) theo \(\sin a,\cos a,\sin b,\cos b\). Từ đó rút ra đẳng \(\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b\,\,\,\left( * \right)\)
d) Tính \(\sin \left( {a - b} \right)\) bằng cách biến đổi \(\sin \left( {a - b} \right) = \sin \left[ {a + \left( { - b} \right)} \right]\) và sử dụng công thức (*)
a) \(PQ = n.\cos a,PQ = m.\cos b\)
b) \(MQ = n.\sin a,PN = m.\sin b \Rightarrow MN = n.\sin a + m.\sin b\)
\(\begin{array}{l}{S_{MPQ}} = \frac{1}{2}m.\cos b.n.\sin a = \frac{1}{2}m.n.\cos b.\sin a\\{S_{NPQ}} = \frac{1}{2}n.\cos a.m.\sin b = \frac{1}{2}m.n.\cos a.\sin b\\{S_{MNP}} = \frac{1}{2}m.n.\sin \left( {a + b} \right)\end{array}\)
c) \({S_{MNP}} = {S_{MPQ}} + {S_{NPQ}} \Rightarrow \frac{1}{2}m.n.\cos b.\sin a + \frac{1}{2}m.n.\cos a.\sin b = \frac{1}{2}m.n.\sin \left( {a + b} \right)\)
\( \Rightarrow \sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b\)
d) \(\sin \left( {a - b} \right) = \sin \left[ {a + \left( { - b} \right)} \right] = \sin a.\cos \left( { - b} \right) + \cos a.\sin \left( { - b} \right) = \sin a.\cos b - \cos a.\sin b\)
Cho hình vẽ biết góc MNP + NPQ bằng 180 độ góc MPQ bằng 50 độ Qx
vuông góc với PQ. Tính góc NMP và góc NRx
Cho tam giác MNP có NMP =120 độ. Trên nửa mặt phẳng bờ NP không chứa M vẽ tam giác đều NPQ. Kẻ QH và QI lần lượt vuông góc với MN và MP tại H và I. Chứng minh
a. Hai góc MNQ và MPQ bù nhau, tam giác QHN = tam giác QIP
b. MQ = MN + MP
Cho tam giác MNP có NMP =120 độ. Trên nửa mặt phẳng bờ NP không chứa M vẽ tam giác đều NPQ. Kẻ QH và QI lần lượt vuông góc với MN và MP tại H và I. Chứng minh
a. Hai góc MNQ và MPQ bù nhau, tam giác QHN = tam giác QIP
b. MQ = MN + MP
cho tam giác MNP có NMP = 120 độ. Trên nửa mặt phẳng bờ NP không chứa M vẽ tam giác đều NPQ. Kẻ QH và QI lần lượt vuông góc với MN và MP tại H và I. Chứng minh
a. Hai góc MNQ và MPQ bù nhau, tam giác QHN = QIP
b. MQ = MN + MP
Cho hình vẽ , biết :
\(\widehat{MNP}+\widehat{NPQ}=180^0;\widehat{MPQ}=50^0;Qx\perp PQ\)
Tính góc NMP và NRx
Cho tam giác MPN cân tại P, vẽ PQ vuông với MN ( Q thuộc MMN )
a) Chứng minh tam giác MPQ = tam giác NPQ
b) Chứng minh Q là trung điểm của MN
c) Tia phân giác của góc M cắt PQ tại K vẽ KI vuông với PM ( I thuộc PM ) Chứng minh tam giác IKQ cân tại K
Anh/chị tự kẻ hình nha :
tam giác MNP cân tại P (gt) => MP = NP (đn) và góc PNM = góc PMN (tc)
góc PQM = góc PQN = 90o do PQ | MN (gt)
=> tam giác MPQ = tam giác NPQ (ch - gn)
b, tam giác MPQ = tam giác NPQ (câu a)
=> MQ = QN (đn) mà Q nằm giữa M và N
=> Q là trung điểm của MN
c, xét tam giác MIK và tam giác MQK có : MK chung
góc QMK = góc KMI do MK là pg của góc M (gt)
góc KQM = góc KIM = 90 do ...
=> tam giác MIK = tam giác MQK (cgv - gnk)
=> KI = KQ (đn)
=> tam giác KIQ cân tại K (đn)
bài 11.Cho hình vẽ biết: MNP + NPQ = 1800; MPQ = 500; \(Qx\perp PQ\). Tính góc NMP và NRx
Dễ thấy MR // PQ
\(\Rightarrow\widehat{RMP}+\widehat{MPQ}=180^0\)
\(\Rightarrow\widehat{RMP}+50^0=180^0\)
\(\Rightarrow\widehat{RMP}=30^0\)
cho hình vẽ . A, hỏi MN//HC ko ? vì sao, b, CMR : MN//PQ,c, vẽ đoạn thẳng MP, biết NMP=87 độ tính MPQ , MPH , d, Qua k kẻ dường thẳng d vuông góc với HK, hỏi d có vuông góc PQ ko d có vuông góc với MN ko ? vì sao
Bạn nào làm đc làm giúp mik với mik cần gấp lắm giúp mik đi mà xin các bạn làm giúp mik nha
b, \(\widehat{HPQ}+\widehat{PHK}=130^o+50^o=180^o\)
\(\Rightarrow MN//HK//PQ\).
d, \(\left\{{}\begin{matrix}d\perp HK\\MN//PQ\end{matrix}\right.\Rightarrow d\perp MN\).
b, \(\widehat{QPH}+\widehat{PHK}=130^o+50^o=180^o\)
\(\Rightarrow HK//PQ\) (cặp góc trong cùng phía bù nhau).
Vì \(\left\{{}\begin{matrix}MN//HK\\HK//PQ\end{matrix}\right.\Rightarrow MN//PQ\).