Bài 2. Các phép biến đổi lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho tam giác MNP có đường cao PQ (Hình 17).

a)     Viết công thức tính PQ theo cạnh n và góc a; công thức tính PQ theo cạnh m và góc b

b)     Viết công thức tính diện tích mỗi tam giác MPQ, NPQ, MNP theo các cạnh m, n và các cạnh m, n và các góc a, b, a + b

c)     Sử dụng kết quả: \({S_{MPN}} = {S_{MPQ}} + {S_{NPQ}}\), hãy tìm công thức tính \(\sin \left( {a + b} \right)\) theo \(\sin a,\cos a,\sin b,\cos b\). Từ đó rút ra đẳng \(\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b\,\,\,\left( * \right)\)

d)     Tính \(\sin \left( {a - b} \right)\) bằng cách biến đổi \(\sin \left( {a - b} \right) = \sin \left[ {a + \left( { - b} \right)} \right]\) và sử dụng công thức (*)

Hà Quang Minh
21 tháng 9 2023 lúc 15:10

a)     \(PQ = n.\cos a,PQ = m.\cos b\)

b)     \(MQ = n.\sin a,PN = m.\sin b \Rightarrow MN = n.\sin a + m.\sin b\)

\(\begin{array}{l}{S_{MPQ}} = \frac{1}{2}m.\cos b.n.\sin a = \frac{1}{2}m.n.\cos b.\sin a\\{S_{NPQ}} = \frac{1}{2}n.\cos a.m.\sin b = \frac{1}{2}m.n.\cos a.\sin b\\{S_{MNP}} = \frac{1}{2}m.n.\sin \left( {a + b} \right)\end{array}\)

c)     \({S_{MNP}} = {S_{MPQ}} + {S_{NPQ}} \Rightarrow \frac{1}{2}m.n.\cos b.\sin a + \frac{1}{2}m.n.\cos a.\sin b = \frac{1}{2}m.n.\sin \left( {a + b} \right)\)

\( \Rightarrow \sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b\)

d)     \(\sin \left( {a - b} \right) = \sin \left[ {a + \left( { - b} \right)} \right] = \sin a.\cos \left( { - b} \right) + \cos a.\sin \left( { - b} \right) = \sin a.\cos b - \cos a.\sin b\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết