Chứng minh rằng: a = 1 + 2 + 3 + ...... + n và b = 2n + 1 ( n \(\in N;n\ge2\)) là 2 số nguyên tố cùng nhau.
Giúp mk đi mk cần rất gấp mk tk 3tk ! hu hu hu
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Chứng minh rằng :
a) \(\dfrac{1.3.5.....39}{21.22.23.....40}=\dfrac{1}{2^{20}}\)
b) \(\dfrac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\dfrac{1}{2^n}\) với \(n\in\) N*
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
Chứng minh rằng: a = 1 + 2 + 3 + ...... + n và b = 2n + 1 ( n \(\in N;n\ge2\)) là 2 số nguyên tố cùng nhau.
HU hu Giúp mk với !!!!!!!!!!
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Cho a=1+2+3+...+n và b=2n+1(với n thuộc N,n>1).chứng minh rằng a và b là 2 số nguyên tố cùng nhau
chứng minh mà bạn!chứ ko có tìm a,b!
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
bài 1 cho a và b là hai số tự nhiên .biết a chia cho 3 dư 1 ; b chia cho 3 dư 2 .chứng minh rằng ab chia cho 3 dư 2
bài 2 chứng minh rằng biểu thức n (2n-3) -2n (n+1) luôn chia hết cho 5 với mọi số nguyên n
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
Các cao nhân giúp mình với
Bài 1: Cho n > 3 và n ∈ N. Chứng minh nếu 2n = 10a + b với a; b ∈ N và 0 < b < 9 thì ab ⋮ 6
Bài 2: Cho các số nguyên dương thỏa mãn a2 + b2 = c2. Chứng minh rằng abc ⋮ 60
Bài 3: Chứng minh rằng nếu a + 1 và 2a + 1 đều là các số chính phương thì a ⋮ 24
Bài 4: Chứng minh rằng nếu a + 1 và 3a + 1 đều là các số chính phương thì a ⋮ 40
Bài 5: Cho 3 số nguyên dương thỏa mãn a3 + b3 + c3 ⋮ 14. Chứng minh rằng abc cũng ⋮ 14
Bài 6: Cho biểu thức S = n4 + 2n3 – 16n2 – 2n + 15. Tìm tất cả các giá trị nguyên của n để S ⋮ 16
Chứng minh rằng
a, n(n+1)(n+2) chia hết cho 3 và 2
b, n(n+1)(2n+1) chia hết cho 2 và 3
a) Ta có: n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp
Vì tích của 2 số tự nhiên liên tiếp thì chia hết cho 2
tích của 3 số tự nhiên liên tiếp thì chia hết cho 3
\(\Rightarrow\)n(n+1)(n+2) chia hết cho 3 và 2.
b) n(n+1)(2n+1) = n(n+1)(n+2+n-1) = n(n+1)(n+2) + n(n+1)(n-1)
Vì n(n+1)(n+2) là tích 3 số tự nhiên liến tiếp \(\Rightarrow\)n(n+1)(n+2) chia hết cho 2 và 3 (theo chứng minh trên) (1)
n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp \(\Rightarrow\)n(n+1)(n-1) chia hết cho 2 và 3 (2)
Từ (1) và (2) \(\Rightarrow\)n(n+1)(2n+1) chia hết cho 2 và 3 (tính chất chia hết của một tổng)
Chứng minh rằng \(2^{n+1}.5^{2n-1}+2^{2n-1}.3^{n+1}⋮38\left(n\in N,n\ge1\right)\)