chứng minh rằng :
\(35^{25}-35^{24}\) chia hết cho 17
bài 2 : chứng minh rằng :
\(n\left(2n-3\right)-2n\left(n+1\right)\) chia hết cho 5 với mọi số nguyên
Chứng minh rằng: \(\left(x+1\right)^{2n+1}+x^{n+2}⋮x^2+x+1\) (n thuộc N)
Chứng minh rằng: \(\left(2n-1\right)^3-2n+1\) chia hết cho 24, Với n nguyên
giúp mk vs
Chứng minh rằng với x ≥ 1; x ∈ N thì:
\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
chứng minh rằng: 1/(4+1^4)+3/(4+3^4)+...+(2n-1)/(4+(2n-1)^4)=n^2/4n^2+1 với mọi n nguyên dương
Cmr: \(5^{2n-1}.2^{n+1}+2^{2n-1}.3^{n+1}⋮38\) ( n ∈ N* )
Chứng minh : Với mọi số nguyên m,n thì ta luôn có :
a) \(mn\left(m^2-n^2\right)⋮3\)
b) \(n\left(n+1\right)\left(2n+1\right)⋮6\)
1. CM: \(55^{n+1}+55^n⋮54\)
2. CM : \(5^6-10^4⋮45\)
3. CM : \(n^2\left(n+2\right)+2n\left(n+2\right)⋮6\left(\forall n\in Z\right)\)
Chứng minh rằng:
Với mọi \(n\) ∈ \(Z\) thì \(P=n\left(2n-3\right)-2n\left(n+2\right)⋮7\)