chứng minh với mọi m thuộc N, ta có : \(\frac{4}{4m+3}=\frac{1}{m+2}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
Bài 3:
1) Cho a, b, c đôi một khác nhau thỏa mãn: ab+bc+ca=1
Tính giá trị biểu thức: \(A=\frac{\left(a+b\right)^2\left(b+c^2\right)\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
2) Cho \(\left\{{}\begin{matrix}x+y=a+b\\x^2+y^2=a^2+b^2\end{matrix}\right.\)
Chứng minh rằng với mọi số nguyên dương n ta có: xn+yn=an+bn.
Bài 1: Chứng minh rằng biểu thức không phụ thuộc vào giá trị của biến
a) \(\left(x-1\right)^3-\left(x-1\right).\left(x^2+x+1\right)-3.\left(1-x\right).x\)
Bài 2: Tìm x: \(\left(x-2\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2=49\)
Bài 3: Tìm 3 số tự nhiên liên tập biết tích 2 số đầu nhỏ hơn tích hai số sau là 50.
Bài 4: Chứng minh rằng: \(\left(n-1\right).\left(n+1\right)-\left(n-7\right).\left(n-5\right)⋮12\)
GIÚP MIK VS!!!! MIK ĐAG CẦN GẤP.
CMR:
a/\(55^{n+1}-55n\) chia hết cho 54 với mọi\(x\in N\)
Ta có \(55^{n+1}-55^n=......................\)
b/\(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
Ta có:\(n^2\left(n+1\right)+2n\left(n+2\right)=.......\)
c/\(2^{n+2}+2^{n+1}+2^n\) chia hết cho 7,với mọi\(x\in N\).
Ta có:\(2^{n+2}+2^{n+1}+2^n=...\)
chứng minh rằng :
\(35^{25}-35^{24}\) chia hết cho 17
bài 2 : chứng minh rằng :
\(n\left(2n-3\right)-2n\left(n+1\right)\) chia hết cho 5 với mọi số nguyên
chứng minh rằng với mọi số n nguyên dương thì:\(5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)⋮91\)
CMR: vs mọi n thuộc Z thì
a) \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2⋮5\)
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)⋮2\)
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)
Chứng minh rằng với mọi số nguyên a , tổng \(\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+...+\left(a+99\right)^2\) không thể viết được thành dạng lũy thừa lớn hơn 1 của một số nguyên dương