Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương_52_7-23 Uyên
Xem chi tiết
Bảo Chu Văn An
30 tháng 11 2021 lúc 21:41

Tham khảo:
 

Ta có: 2^n+1;2^n;2^n-1  là 3 số tự nhiên liên tiếp

=>một trong 3 số trên chia hết cho 3

mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3

mặt khác: 2^n ko chia hết cho 3

=>2^n-1 chia hết cho 3

CHÚC CẬU HỌC TỐT VÀ ĐẠT KẾT QUẢ CAO!

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 8 2018 lúc 9:31

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Hồng Hà Thị
Xem chi tiết
Nguyễn Minh Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

кαвαиє ѕнιяσ
Xem chi tiết

k hộ mik nhéundefinedundefined

Khách vãng lai đã xóa

TL

undefinedundefinedundefinedk hộ mik

Hoktot~

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:22

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

locdddd33
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 9:30

a: Gọi d=ƯCLN(2n+2;2n+3)

=>2n+3-2n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

 

HT.Phong (9A5)
13 tháng 8 2023 lúc 9:34

a) Đặt d là ƯCLN(2n+2, 2n+3) 

\(2n+2\text{ ⋮ }d\) và \(2n+3\text{ ⋮ }d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)\text{ ⋮ }d\)

\(\Rightarrow2n+3-2n-2\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+2 và 2n+3 là cặp số nguyên tốc cùng nhau 

HT.Phong (9A5)
13 tháng 8 2023 lúc 9:42

b) Đặt d là ƯCLN(2n+1, n+1) 

\(2n+1\text{ ⋮ }d\) và \(n+1\text{ ⋮ }d\)

\(\Rightarrow2n+1\text{ ⋮ }d\) và \(2n+2\text{ ⋮ }d\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)\text{ ⋮ }d\)

\(\Rightarrow2n+2-2n-1\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+1 và n+1 là cặp số nguyên tố cùng nhau 

c) Đặt d là ƯCLN(n+1, 3n+4) 

\(n+1\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow3n+3\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)\text{ ⋮ }d\)

\(\Rightarrow3n+4-3n-3\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

Vậy n+1 và 3n+4 là cặp số nguyên tốc cùng nhau 

Nguyễn Kim Ngân
Xem chi tiết
Nguyễn Văn Vi Duy Hưng
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 23:48

Lời giải:
a. 

$2n^2+n-6=n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1$ là ước của $6$

Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

b.

Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$

Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$

Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$

Suy ra $p^2-1$ luôn chia hết cho $3$ (*)

Mặt khác:

$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$

$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)

Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.