Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bao Cao Su
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Son Do
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 6 2023 lúc 11:44

=>x^4+4x^2+9-4x^3-6x^2+12x<x^4-4x^3-2x^2+15x-3

=>-2x^2+12x+9<-2x^2+15x-3

=>-3x<-12

=>x>4

Thichhoctoan
Xem chi tiết
Lê Hồ Trọng Tín
10 tháng 8 2019 lúc 19:13

Pt tương đương:

\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\)=\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\)

\(\Leftrightarrow\)-3\(\sqrt[3]{\text{(4x-3)(3x+1)}}\)(\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\))=3\(\sqrt[3]{\left(5-x\right)\left(2x-9\right)}\)(\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\))

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt[3]{4x-3}-\sqrt[3]{3x+1}=\sqrt[3]{5-x}+\sqrt[3]{2x-9}=0\left(1\right)\\3\sqrt[3]{-12x^2+5x+3}=3\sqrt[3]{-2x^2+19x-45}\left(2\right)\end{cases}}\)

(1)<=>4x-3=3x+1 và x-5=2x-9<=>x=4

(2)<=>-12x2+5x+3=-2x2+19x-45<=>-5x2-7x+24=0<=>x=8/5 và x=-3

 bạn thử các giá trị x=4,x=8/5 và x=-3 vào pt và kết luận

Upin & Ipin
10 tháng 8 2019 lúc 19:27

mik ko hieu vi sao ban suy ra duoc (1) va (2)

bn co the viet ro ra duoc ko ?

theo mik thay thi 2 pt do dau co tuong duong

Lê Hồ Trọng Tín
10 tháng 8 2019 lúc 19:30

Mình chuyển vế rồi lập phương, do  4x-3-(3x+1)=2x-9+(5-x) nên mình giản bỏ luôn, hơi tắc xíu

Pham Tu
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Sakura Maichiru
Xem chi tiết
Akai Haruma
11 tháng 3 2019 lúc 19:49

Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)

BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)

\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)

\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)

\(\Leftrightarrow x(x+1)\leq 0\)

\(\Leftrightarrow -1\leq x\leq 0\)

Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)

LEGGO
Xem chi tiết
Vũ Tiền Châu
23 tháng 7 2018 lúc 20:54

liên hợ thôi !

Nguyễn Ngọc Trâm
Xem chi tiết
Nguyễn Tiến Dũng
8 tháng 10 2018 lúc 20:34

Căn bậc hai. Căn bậc ba