\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}vàx.y.z=22400\)
\(\dfrac{40}{x-30}\)=\(\dfrac{20}{y-15}\)=\(\dfrac{28}{z-21}\)và x.y.z=22400
Tìm x,y,z
\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}vàxyz=22400\)
\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\Leftrightarrow\dfrac{x-30}{40}=\dfrac{y-15}{20}=\dfrac{z-21}{28}\)
\(\Rightarrow\dfrac{x-30}{10}=\dfrac{y-15}{5}=\dfrac{z-21}{7}\)
\(\Rightarrow\dfrac{x}{10}-\dfrac{30}{10}=\dfrac{y}{5}-\dfrac{15}{5}=\dfrac{z}{7}-\dfrac{21}{7}\)
\(\Rightarrow\dfrac{x}{10}-3=\dfrac{y}{5}-3=\dfrac{z}{7}-3\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{z}{7}\)
Đặt: \(\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{z}{7}=t\Rightarrow\left\{{}\begin{matrix}x=10t\\y=5t\\z=7t\end{matrix}\right.\)
\(xyz=22400\Leftrightarrow350t^3=22400\Leftrightarrow t^3=64\Rightarrow t=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)
Ta có 40x−30 = 20y−15 = 28z−21 => 40x - 4030= 20y - 2015= 28z- 2821
<=> 40x - 43= 20y - 43 = 28z- 43
<=> 40x = 20y = 28z
Đặt 40x = 20y = 28z= k
Suy ra x = 40k, y = 20k, z = 28k
Khi đó xyz = 40k.20k.28k = 22400k3k3
Theo đề xyz = 22400 suy ra k3k3 = 1 <=> k = ±±1
Với k = 1, ta có x = 40, y = 20, z = 28
Với k = -1, ta có x = -40, y = -20, z = -28
Tìm x ; y;z :
\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\) và x . y. z = 22400
Tìm x, y, z
\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\) và xyz=22400
Đặt \(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}=k\)
Có: \(x-30=\dfrac{40}{k}\Leftrightarrow x=\dfrac{40}{k}+30\) (1)
\(y-15=\dfrac{20}{k}\Leftrightarrow y=\dfrac{20}{k}+15\)(2)
\(z-21=\dfrac{28}{k}\Leftrightarrow z=\dfrac{28}{k}+21\) (3)
Dễ thấy k là ƯCLN của 40 ; 20 ; 28. Do đó :
k = ƯCLN(40,20,28) = 4
Thế vào (1) ; (2); (3). Ta có:
\(x=\dfrac{40}{k}+30=\dfrac{40}{4}+30=40\)
\(y=\dfrac{20}{k}+15=\dfrac{20}{4}+15=20\)
\(z=\dfrac{28}{k}+21=\dfrac{28}{4}+21=28\)
Vậy ....
Tìm 3 số x, y, z biết \(\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}\) và x.y.z = 22400
Đặt \(\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}=k\Leftrightarrow x=40k;y=20k;z=28k\)
\(xyz=22400\\ \Leftrightarrow22400k^3=22400\\ \Leftrightarrow k^3=1\Leftrightarrow k=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)
\(\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=40k\\y=20k\\z=28k\end{matrix}\right.\)\(\Rightarrow xyz=22400k^3=22400\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)
40/x-30=20/y-15=28/z-21 và xyz=22400
40x−30=20y−15=28z−21⇔x−3040=y−1520=z−2128" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
x−3010=y−155=z−217" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
x10−3010=y5−155=z7−217" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
x10−3=y5−3=z7−3" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
x10=y5=z7" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
x10=y5=z7=t⇒{x=10ty=5tz=7t" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
Ớ bài này mình lm sai ạ !
40/x-30=20/y-15=28/z-21 và xyz=22400
Tìm x,y,z
Tìm x,y,z biết:
a.15/x-9=20/y-1=40/z-24 và xy=1200
b. 40/x-30=20/y-15=28/z-21 và xyz=22400
tìm x,y,z
a)\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
b)\((x-1)=2\left(y-2\right)=3\left(z-3\right)\)và \(2x+3y-z=50\)
c) \(\dfrac{3x-2y}{37}=\dfrac{5y-3z}{15}=\dfrac{2z-5x}{2}\) và \(10-3y-2z=-4\)
d) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)và \(2x+3y-z=50\)
e) \(ab=\dfrac{1}{2};bc=\dfrac{2}{3};ac=\dfrac{3}{4}\)
f)\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\) và \(x.y.z=22400\)
ù uôi!!!câu e ảo quá!!!tìm x,y,z mà laj toàn a,b,c ms tài@_@