So sánh
S= 1/5+1/9+1/10+1/41+1/42 với 1/2
So sánh S=1/5+1/9+1/10+1/41+1/42 với 1/2
Bạn phải giải đầy đủ ra thì mình mới k cho
1/5+1/9+1/10+1/41+1/42=5932/12915suy ra 5932/12915<1/2
So sánh tổng S= 1/5 +1/9+1/10+1/41+1/42
với 1/2
Ta có : \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
\(\Rightarrow S=\dfrac{1}{5}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\) (đpcm)
So sánh tổng S= 1/5 +1/9+1/10+1/41+1/42
với 1/2
Ta có : \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
\(\Rightarrow S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)(đpcm)
so sánh tổng S=1/5+1/9+1/10+1/41+1/42 với 1/2
ai nhanh và đúng mk tick
nếu mún thì 1 k
còn ko mún thì 50 k
So sánh: 1/5+1/9+1/10+1/41+1/42 và 1/2
Mình cũng đang cân người giúp câu dó nên ko trả lời được đâu !
So Sánh : S = \(\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\) và \(\dfrac{1}{2}\)
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)
Ta có :
+) \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}\)
+) \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}\)
\(\Leftrightarrow S< \dfrac{1}{5}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{40}+\dfrac{1}{40}\)
\(\Leftrightarrow S< \dfrac{1}{2}\)
Vậy,,,
Ta có: \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{2}{40}=\dfrac{1}{20}\)
Do đó: \(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{4}+\dfrac{1}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{3}{10}+\dfrac{1}{5}=\dfrac{3}{10}+\dfrac{2}{10}=\dfrac{1}{2}\)
hay \(S< \dfrac{1}{2}\)(đpcm)
So sánh tổng S=\(\frac{1}{5}+\frac{1}{9}+\frac{1}{10}+\frac{1}{41}+\frac{1}{42}\)với \(\frac{1}{2}\)
Ta có: 1/9 + 1/10 < 1/8+1/8 = 1/4
1/41+1/42< 1/40+1/40=1/20
=> 1/5+1/9+1/10+1/41+1/42<1/5+1/4+1/20=1/2
Vậy 1/5+1/9+1/10+1/41!+1/42<1/2
So sánh: \(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)với \(\dfrac{1}{2}\)