1/xyz+1/xyz+2/xyz=?
tính
A= xyz + (xyz)2+(xyz)3+...+(xyz)2019.
Tại x = -20,y=1/2 và z = 1/5
Theo bài ra,ta có:
\(xyz=-20\cdot\frac{1}{2}\cdot\frac{1}{5}=-\frac{20}{10}=-2\)
\(\Rightarrow A=-2+\left(-2\right)^2+\left(-2\right)^3+.....+\left(-2\right)^{2019}\)
\(\Rightarrow-2A=\left(-2\right)^2+\left(-2\right)^3+\left(-2\right)^4+....+\left(-2\right)^{2020}\)
\(\Rightarrow-3A=-2^{2020}+2\)
\(\Rightarrow A=\frac{-2^{2020}+2}{-3}\)
Tính
5 xyz - 1/3 xyz + xyz
\(5xyz-\dfrac{1}{3}xyz+xyz=\left(5-\dfrac{1}{3}+1\right)xyz=\dfrac{17}{3}xyz\)
\(5xyz-\dfrac{1}{3}xyz+xyz=\dfrac{17}{3}xyz\)
tính tổng : \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2+\left(-\frac{1}{4}\right)xyz^2\)
\(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2+\left(-\frac{1}{4}\right)xyz^2\)
=\(\left(\frac{3}{4}+\frac{1}{2}-\frac{1}{4}\right)xyz^2\)
=\(xyz^2\)
\(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2+\left(-\frac{1}{4}\right)xyz^2\)
=\(xyz^2\left[\frac{3}{4}+\frac{1}{2}+\left(-\frac{1}{4}\right)\right]\)
=\(xyz^2.1\)
= \(xyz^2\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho 3 số thực dương x,y,z.Cmr:
1/(x^3+y^3+xyz) +1/(y^3+z^3+xyz) +1/(z^3+x^3+xyz)<hoặc =1/xyz
Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
\(\Rightarrow VT\le\dfrac{1}{xy\left(x+y\right)+xyz}+\dfrac{1}{yz\left(y+z\right)+xyz}+\dfrac{1}{zx\left(z+x\right)+xyz}\)
\(\Rightarrow VT\le\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=\dfrac{1}{x+y+z}.\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho x,y,x > 0. Chứng minh 1/ x^3 + y^3+ xyz + 1/ y^3+ +z^3+ xyz + 1/ z^3+ x^3+ xyz < hay = 1/xyz
Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)
( điều này luôn đúng với mọi x ; y > 0 )
=> BĐT được c/m
Áp dụng vào bài toán , ta có :
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)
Tính tổng của các đơn thức sau:
\(\frac{3}{4}\)\(xyz^2\); \(\frac{1}{2}\)\(xyz^2\); - \(\frac{1}{4}\)\(xyz^2\)
A. \(\frac{5}{4}\)\(xyz^2\)
B. \(\frac{1}{4}\)\(xyz^2\)
C. 3\(xyz^2\)
D. \(xyz^2\)