Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sonyeondan Bangtan
Xem chi tiết
Vo Thanh Dat
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2022 lúc 18:29

Là \(\left(x-\dfrac{2}{x}\right)^8\) hay \(\left(x+\dfrac{2}{x}\right)^8\) nhỉ?

Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 11 2021 lúc 15:47

\(C_n^0+C_n^1+C_n^2=11\)

\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)

\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)

\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)

\(5k-8=7\Rightarrow k=3\)

Hệ số: \(C_4^3=4\)

James Pham
Xem chi tiết
Nothing
6 tháng 5 2023 lúc 19:53

\(\left(2x^2-\dfrac{1}{x^2}\right)^4=C^k_4\left(2x^2\right)^{4-k}\left(-\dfrac{1}{x^2}\right)^k\)

\(=C^k_4.2^{4-k}.x^{8-2k-2k}.\left(-1\right)^k\)

\(=C^k_4.2^{4-k}.x^{8-4k}.\left(-1\right)^k\)

\(ycbt\Leftrightarrow8-4k=0\Leftrightarrow k=2\)

\(\Rightarrow C^2_4.2^{4-2}.\left(-1\right)^2=24\)

Vậy số hạng không chứa \(x\) trong khai triển là \(24\).

Kimian Hajan Ruventaren
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Thiên Anh
3 tháng 4 2017 lúc 21:50

Ta có: (x3 + )8= Ck8 x3(8 – k) ()k = Ck8 x24 – 4k

Trong tổng này, số hạng Ck8 x24 – 4k không chứa x khi và chỉ khi

⇔ k = 6.

Vậy số hạng không chứa x trong khai triển (theo công thức nhị thức Niu - Tơn) của biểu thức đã cho là C68 = 28.

ánh tuyết nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:00

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)

Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 11 2021 lúc 16:59

\(\left(C_n^6+C_n^7\right)+2\left(C_n^7+C_n^8\right)+\left(C_n^8+C_n^9\right)=2C_{n+2}^8\)

\(\Leftrightarrow C_{n+1}^7+2C_{n+1}^8+C_{n+1}^9=2C_{n+2}^8\)

\(\Leftrightarrow\left(C_{n+1}^7+C_{n+1}^8\right)+\left(C_{n+1}^8+C_{n+1}^9\right)=2C_{n+2}^8\)

\(\Leftrightarrow C_{n+2}^8+C_{n+2}^9=2C_{n+2}^8\)

\(\Leftrightarrow C_{n+2}^9=C_{n+2}^8\)

\(\Leftrightarrow n+2=9+8\)

\(\Rightarrow n=15\)

\(\left(x^2-\dfrac{1}{x^2}\right)^{15}\) có SHTQ: \(C_{15}^kx^{2k}.\left(-1\right)^{15-k}.x^{2k-30}=C_{15}^k.\left(-1\right)^{15-k}.x^{4k-30}\)

Số hạng ko chứa x \(\Rightarrow4k-30=0\) ko có k nguyên thỏa mãn

\(\Rightarrow\) Ko tồn tại số hạng ko chứa x

Đề bài sai

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
19 tháng 5 2017 lúc 11:34

Số hạng thứ \(k+1\) trong khai triển là :

\(t_{k+1}=C^k_{10}x^{10-k}\left(\dfrac{2}{x}\right)^k\)

Vậy \(t_5=C^4_{10}x^{10-4}.\left(\dfrac{2}{x}\right)^4=210.x^6.\dfrac{16}{x^4}=3360x^2\)