Các hệ số a,b thỏa mãn đẳng thức : \(\dfrac{1}{x^2-4}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\)là
tìm a,b thỏa mãn đẳng thức với mọi x≠-5, x≠4
\(\dfrac{5x-2}{x^2+x-20}\)=\(\dfrac{a}{x+5}\)-\(\dfrac{b}{x-4}\)
Các hệ số a,b thỏa mãn đẳng thức : \(\dfrac{1}{x^2-4}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\)là
Ta co:
\(\dfrac{1}{x^2-4}=\dfrac{1}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\dfrac{1}{\left(x-2\right)\left(x+2\right)}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\)
\(\Rightarrow\dfrac{a\left(x+2\right)+b\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{ax+2a+bx-2b}{\left(x-2\right)\left(x+2\right)}\)
Ta có: \(\dfrac{1}{x^2-4}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\Rightarrow\dfrac{1}{x^2-4}=\dfrac{ax+2a+bx-2b}{x^2-4}\)
\(\Rightarrow ax+2a+bx-2b=1\)
\(\Rightarrow x\left(a+b\right)+\left(2a-2b\right)=0x+1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=0\\2a-2b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{4}\\b=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy: \(a=\dfrac{1}{4};b=-\dfrac{1}{4}\).
a/ CM:\(\sqrt{x^4+1}\)≥\(\dfrac{1}{\sqrt{17}}\left(x^2+4\right)\) với mọi số thực x.Dấu đẳng thức xảy ra khi nào?
b/ Cho a,b là các số thực thỏa mãn \(a^2+b^2\) ≥\(\dfrac{1}{2}\) .Tính giá trị nhỏ nhất của biểu thức D=\(\sqrt{a^2+1}+\sqrt{b^2+1}\)
Cho \(a,b,x,y\) là các số thực thỏa mãn: \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\) Chứng minh rằng: \(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\dfrac{2}{\left(a+b\right)^{1008}}\)
1. Phân tích đa thức thành nhân tử:
\(x^5-x^4+\left(y+2\right)x^3+\left(y-2\right)x^2+yx+y^2\)
2. Cho các số dương thỏa mãn:
\(\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tính giá trị biểu thức sau: \(P=\left(a-b\right)^{2009}+\left(b-c\right)^{2009}+\left(c-a\right)^{2009}\)
3. Cho x,y,x đôi một khác nhau và khác 0. Chứng minh rằng nếu:
\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\) thì ta có:
\(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
1.
\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)
\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)
\(=\left(x^3-x^2+3x\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)
Hay đa thức trên có thể phân tích thành:
\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)
Dựa vào đó em tự tách cho phù hợp
2.
\(VT=a\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+b\left(\dfrac{1}{a^2}+\dfrac{1}{c^2}\right)+c\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(VT\ge\dfrac{2a}{bc}+\dfrac{2b}{ac}+\dfrac{2c}{ab}=2\dfrac{a^2+b^2+c^2}{abc}\)
\(VP=\dfrac{2\left(ab+bc+ca\right)}{abc}\)
\(\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{a^2+b^2+c^2}{abc}\)
\(\Rightarrow ab+bc+ca\ge a^2+b^2+c^2\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\)
\(\Rightarrow a=b=c\)
3.
\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\)
\(\Rightarrow\left(\dfrac{x^2-yz}{a}\right)^2=\left(\dfrac{y^2-xz}{b}\right)\left(\dfrac{z^2-xy}{c}\right)=\dfrac{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}{a^2-bc}\)
\(=\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}\)
Tương tự:
\(\left(\dfrac{y^2-xz}{b}\right)^2=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}\)
\(\left(\dfrac{z^2-xy}{c}\right)^2=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)
\(\Rightarrow\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)
\(\Rightarrow\dfrac{x}{a^2-bc}=\dfrac{y}{b^2-ac}=\dfrac{z}{c^2-ab}\Rightarrowđpcm\)
Tìm đa thức B thỏa mãn đẳng thức:\(\dfrac{x^2-1}{\left(x^2-2x+1\right)}=\dfrac{x+1}{\left(x^2-x-6\right)B}\)
\(\Leftrightarrow\dfrac{x+1}{\left(x-3\right)\left(x+2\right)\cdot B}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
\(\Leftrightarrow B=\dfrac{x-1}{\left(x-3\right)\left(x+2\right)}\)
Với a,b,c là các số thực dương thỏa mãn đẳng thức \(6a+3b+2c=abc\)
➢Tìm giá trị lớn nhất của \(Q=\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)
Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)
\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)
\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)
\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)
\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)
Cho 2 biểu thức:
A=\(\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}\) B=\(\dfrac{2x+1}{x^2-4}\)
a) Tính giá trị của biểu thức B khi x thỏa mãn \(|4x-2|=6\)
b)Rút gọn biểu thức A
c)Tìm x để P=\(\dfrac{2A}{B}>1\)
a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}
Thay x = 2, ta có B không tồn tại
Thay x = -1, ta có B = \(\dfrac{1}{3}\)
b)ĐKXĐ:x ≠ 2,-2
Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x
Do đó không tồn tại x thỏa mãn đề bài
Cho x,y,a,b là những số thực thỏa mãn:
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^2+y^2}{a+b}\)và\(x^2+y^2=1\)
Chứng minh: \(\dfrac{x^{2006}}{a^{1003}}+\dfrac{y^{2006}}{b^{1003}}=-\dfrac{2}{\left(a+b\right)^{1003}}\)