3.(x+4)= 23x+2
Giải các PT sau
1. \(\cos^2\left(x-30^{\cdot}\right)-\sin^2\left(x-30^{\cdot}\right)=\sin\left(x+60^{\cdot}\right)\)
2. \(\sin^22x+\cos^23x=1\)
3. \(\sin x+\sin2x+\sin3x+\sin4x=0\)
4. \(\sin^2x+\sin^22x=\sin^23x\)
1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)
2.\(sin^22x+cos^23x=1\)
\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)
\(\Leftrightarrow cos6x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)
Vậy...
3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)
\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)
\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))
Vậy...
4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)
\(\Leftrightarrow cos2x+cos4x=1+cos6x\)
\(\Leftrightarrow2cos3x.cosx=2cos^23x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
Tìm x :
\(4\dfrac{2}{3}x-1\dfrac{3}{4}=\dfrac{1}{23x}\)
\(\Rightarrow\dfrac{14}{3}x-\dfrac{7}{4}\)=\(\dfrac{1}{23x}\)
\(\dfrac{14}{3}x-\dfrac{1}{23x}\)=\(\dfrac{7}{4}\)
2x ^3 -5x^2+4x-1) : (2x+1)
(x63 -2x+4) ; (x+2)
(6x^3 - 19x^2+23x-12):(2x-3)
(x^4 - 2 x ^3 - 1+ 2 x ):(x^2 - 1)
(6x^3 - 5x^2 + 4x -1 ) : (2x^2-x+1)
(x^4 -5x^2+4):(x^2-3x+2)
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
Viết đa thức dưới dạng bình phương của một tam thức bậc hai a) x^4-2x^3-3x^2+4x+4
b) x^4+2x^3-23x^2-24x+144
\(a)x^4-2x^3-3x^2+4x+4=(x^4-x^3-2x^2)-\left(x^3-x^2-2x\right)-\left(2x^2-2x-4\right)\)
\(=\left(x^2-x-2\right)\left(x^2-x-2\right)=\left(x^2-x-2\right)^2\)
\(b)x^4+2x^3-23x^2-24x+144=\left(x^4+x^3-12x^2\right)+\left(x^3+x^2-12x\right)-\left(12x^2+12x-144\right)\)
\(=\left(x^2+x-12\right)\left(x^2+x-12\right)=\left(x^2+x-12\right)^2\)
tính tổng avf hiệu các đa thức sau
G(x) = 21x^2 + 1 + 17x và H(x) = -2+ 6x^3-12x^2-8
M(x) = 7x^5 + 1 + 17x^4 - 2 và N(x) = 6x^4 - 12x^2 - 23x^4 + x
`G(x)+H(x)=(21x^2+1+17x)+(-2+6x^3-12x^2-8)`
`=21x^2+1+17x-2+6x^3-12x^2-8`
`= 6x^3+(21x^2-12x^2)+17x+(1-2-8)`
`= 6x^3+9x^2+17x-9`
`G(x)-H(x)=(21x^2+1+17x)-(-2+6x^3-12x^2-8)`
`= 21x^2+1+17x+2-6x^3+12x^2+8`
`= -6x^3+(21x^2+12x^2)+17x+(1+2+8)`
`= -6x^3+33x^2+17x+11`
`----`
`M(x)+N(x)=(7x^5 + 1 + 17x^4 - 2)+(6x^4 - 12x^2 - 23x^4 + x)`
`= 7x^5 + 1 + 17x^4 - 2+6x^4 - 12x^2 - 23x^4 + x`
`= 7x^5+(17x^4+6x^4-23x^4)-12x^2+x+(1-2)`
`= 7x^5-12x^2+x-1`
`M(x)-N(x)=(7x^5 + 1 + 17x^4 - 2)-(6x^4 - 12x^2 - 23x^4 + x)`
`= 7x^5 + 1 + 17x^4 - 2-6x^4 + 12x^2 + 23x^4 - x`
`= 7x^5+(17x^4-6x^4+23x^4)+12x^2-x+(1-2)`
`= 7x^5+34x^4+12x^2-x-1`
tính tổng avf hiệu các đa thức sau
G(x) = 21x^2 + 1 + 17x và H(x) = -2+ 6x^3-12x^2-8
M(x) = 7x^5 + 1 + 17x^4 - 2 và N(x) = 6x^4 - 12x^2 - 23x^4 + x
Mình đã trl rồi nha!
(https://hoc24.vn/cau-hoi/tinh-tong-avf-hieu-cac-da-thuc-saugx-21x2-1-17x-va-hx-2-6x3-12x2-8mx-7x5-1-17x4-2-va-nx-6x4-12x2-23x4-x.7858748287383)
rút gọn A=(3√x+6x−4+√x√x−23x+6x−4+xx−2) / x−9√x−3x−9x−3
tính giá trị của A khi x = (3+2√2)2015⋅(3−2√2)2016
Câu hỏi: Làm tính chia:
a/ (2x4 - 11x3 + 19x2 - 23x + 5) : (x2 - 4x + 1)
b/ (3x4 - 8x3 - 10x2 + 8x - 5) : (3x2 - 2x + 1)
c/ (2x4 - 23x + 19x2 -11x3 + 5) : (x2 - 4x + 1)
a, =2x2-3x+5
b,=x2-2x-5
c,2x2-19x+93(dư 368x-88)
giải bpt x4-8x3+23x2-28x+12<_0
\(\Leftrightarrow x^4-4x^3+4x^2-4x^3+16x^2-16x+3x^2-12x+12\le0\)
\(\Leftrightarrow x^2\left(x^2-4x+4\right)-4x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)\le0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x-2\right)^2\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-4x+3\le0\end{matrix}\right.\) \(\Rightarrow1\le x\le3\)