Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Akira Vy

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 6 2021 lúc 17:07

1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)

2.\(sin^22x+cos^23x=1\)

\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)

\(\Leftrightarrow cos6x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)

Vậy...

3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)

\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)

\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))

Vậy...

4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)

\(\Leftrightarrow cos2x+cos4x=1+cos6x\)

\(\Leftrightarrow2cos3x.cosx=2cos^23x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...

Vũ Vân Anh
Xem chi tiết
Nguyễn Tuấn Lộc
16 tháng 4 2017 lúc 13:46

\(\Rightarrow\dfrac{14}{3}x-\dfrac{7}{4}\)=\(\dfrac{1}{23x}\)

\(\dfrac{14}{3}x-\dfrac{1}{23x}\)=\(\dfrac{7}{4}\)

Xuân Liệu
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2021 lúc 15:04

d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)

\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)

\(=x^2-2x+1\)

\(=\left(x-1\right)^2\)

cu to
Xem chi tiết
headsot96
15 tháng 7 2019 lúc 15:03

\(a)x^4-2x^3-3x^2+4x+4=(x^4-x^3-2x^2)-\left(x^3-x^2-2x\right)-\left(2x^2-2x-4\right)\)

\(=\left(x^2-x-2\right)\left(x^2-x-2\right)=\left(x^2-x-2\right)^2\)

\(b)x^4+2x^3-23x^2-24x+144=\left(x^4+x^3-12x^2\right)+\left(x^3+x^2-12x\right)-\left(12x^2+12x-144\right)\)

\(=\left(x^2+x-12\right)\left(x^2+x-12\right)=\left(x^2+x-12\right)^2\)

Nguyễn Huyền Trang
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
2 tháng 4 2023 lúc 15:02

`G(x)+H(x)=(21x^2+1+17x)+(-2+6x^3-12x^2-8)`

`=21x^2+1+17x-2+6x^3-12x^2-8`

`= 6x^3+(21x^2-12x^2)+17x+(1-2-8)`

`= 6x^3+9x^2+17x-9`

`G(x)-H(x)=(21x^2+1+17x)-(-2+6x^3-12x^2-8)`

`= 21x^2+1+17x+2-6x^3+12x^2+8`

`= -6x^3+(21x^2+12x^2)+17x+(1+2+8)`

`= -6x^3+33x^2+17x+11`

`----`

`M(x)+N(x)=(7x^5 + 1 + 17x^4 - 2)+(6x^4 - 12x^2 - 23x^4 + x)`

`= 7x^5 + 1 + 17x^4 - 2+6x^4 - 12x^2 - 23x^4 + x`

`= 7x^5+(17x^4+6x^4-23x^4)-12x^2+x+(1-2)`

`= 7x^5-12x^2+x-1`

`M(x)-N(x)=(7x^5 + 1 + 17x^4 - 2)-(6x^4 - 12x^2 - 23x^4 + x)`

`= 7x^5 + 1 + 17x^4 - 2-6x^4 + 12x^2 + 23x^4 - x`

`= 7x^5+(17x^4-6x^4+23x^4)+12x^2-x+(1-2)`

`= 7x^5+34x^4+12x^2-x-1`

Nguyễn Huyền Trang
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
2 tháng 4 2023 lúc 15:03

Mình đã trl rồi nha!

(https://hoc24.vn/cau-hoi/tinh-tong-avf-hieu-cac-da-thuc-saugx-21x2-1-17x-va-hx-2-6x3-12x2-8mx-7x5-1-17x4-2-va-nx-6x4-12x2-23x4-x.7858748287383)

Đỗ Đàm Phi Long
Xem chi tiết
Lý Lạc Long Gia Hảo
Xem chi tiết
린 린
16 tháng 11 2018 lúc 20:59

a, =2x2-3x+5

b,=x2-2x-5

c,2x2-19x+93(dư 368x-88)

Phạm Ngọc An
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2020 lúc 20:33

\(\Leftrightarrow x^4-4x^3+4x^2-4x^3+16x^2-16x+3x^2-12x+12\le0\)

\(\Leftrightarrow x^2\left(x^2-4x+4\right)-4x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)\le0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x-2\right)^2\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-4x+3\le0\end{matrix}\right.\) \(\Rightarrow1\le x\le3\)