Cho ΔΔABC vuông tại A có AB=12cm , AC=16cm ,BC=20cm đường phân giác BD (D đồng dạng AC
Tính DA và DC
Kẻ đường cao AH (H đồng dạng BC) Chứng minh:ΔABC đồng dạng với ΔHAC
Chứng ming:AC2=BC.HC
Bài 1: Cho tam giác ABC vuông tại A có AB = 12cm; AC = 16cm. Kẻ đường cao AH (H thuộcBC) a/ Chứng minh HAC đồng dạng ABC. b/ Tính độ dài các đoạn thẳng BC, HC. c/ Từ B vẽ đường phân giác BD . Tính độ dài các đoạn thẳng DA, DC.
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
Do đó: ΔHAC\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)
Cho tam giác ABC vuông tại A , biết AB=12cm , AC= 16cm kẻ AH vuông góc với BC ( H thuộc BC)
a. chứng minh tam giác ABC đồng dạng với tam giác HBA
b.tính BC, AH , HB
c. Kẻ đường phân giác BD , tính AD/CD
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
Cho tgiac ABC vuông tại A có AB=12cm,AC=16cm, có phân giác BD(D thuộc AC) a) TÍnh DA,DC b) Kẻ đường cao AH của tam giác ABC. CMinh tgiac AHB đồng dạng vs tam giác ABC c) C/minh:AH.AH=HB.HC d) Kẻ DK vuông góc BC tại K. Tính HK
Cho tam giác ABC vuông tại A, đường cao AH.
a, Chứng minh tam giác AHB đồng dạng tam giác CAB
b, Cho đường phân giác BD của tam giác ABC cắt AH tại E ( E thuộc AC ). Biết AB = 12cm; BC= 16cm. Tính SEBH/SDBA.
c, Chứng minh EA/EH = DC/DA
Cho △ ABC vuông tại A , có AB = 12cm ; AC = 16cm . Kẻ đường cao AH ( H ∈ BC )
a , Chứng minh : △HBA đồng dạng △ABC
b , Tính độ dài các đoạn thẳng BC , AH .
c , Trong △ABC kẻ phân giác AD ( D ∈ BC ) . Trong △ADB kẻ phân giác DE ( E ∈ AB ) ; trong △ADC kẻ phân giác DF ( F ∈ AC )
Chứng minh rằng : EA/EB.DB/DC.FC/FA = 1
giúp em với mọi người ơiiiii
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
Cho ΔABC vuông tại A (AB<AC), đường cao AH (H∈BC). BD là phân giác của ∠ABC (D∈AC). Gọi I là giao điểm của AH và BD.
a. Chứng minh: ΔHBA đồng dạng ΔABC và ΔHBI đồng dạng ΔABD
b. Chứng minh: \(\frac{IA}{IH}=\frac{BC}{AB}\)
c. Đường thẳng vuông góc với BD tại B cắt đường thẳng AH tại M. CHứng minh: MA.IH = MH.IA
Giúp mình ý b,c với ạ
Cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH và đường phân giác AD của tam giác.
a) Chứng minh tam giác HBA đồng dạng tam giác ABC
b) Tính tỉ số diện tích của tam giác ABD và tam giác ADC
c) Tính BC, BD và AH
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Do E là chân đường phân giác góc D, theo định lý phân giác:
\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)
\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)
\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)
Câu a quá dễ rồi bạn tự làm
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=20\) (cm)
Theo câu a, do 2 tam giác vuông HBA và ABC đồng dạng
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 9 cm. Đường cao AH ( H thuộc BC). a) Chứng minh: HAC đồng dạng ABC b) Chứng minh: AC2 = BC.HC c) Kẻ đường phân giác AD, tính độ dài BD và CD . ( lm r nma sợ sai ;-; )
Áp dụng pytago vào \(\Delta ABC\) vuông ta đc
\(BC^2=AB^2+AC^2=\sqrt{117}\left(3\sqrt{13}\right)\)
Mà AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow BD=CD=\dfrac{BC}{2}=\dfrac{3\sqrt{13}}{2}\)