có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0,1,2,3,4,5
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
Có 5 cách chọn chữ số hàng chục ngàn ( Vì 0 ko thể được chọn là chữ số hàng chục ngàn )
Có 5 cách chọn chữ số hàng ngàn
Có 4 cách chọn chữ số hàng trăm
Có 3 cách chọn chữ số hàng chục
Có 2 cách chọn chữ số hàng đ.vị
Vậy có số số tự nhiên khác nhau được lập từ các số 0;1;2;3;4;5 là: 5 x 5 x 4 x 3 x 2 = 600 số
Bạn muốn nhận giày và balo miễn phí cho năm học mới? --->Tham gia ngay Minigame NHANH NHƯ CHỚP số thứ 7 ngày 16/02/2019 tại đây: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b Cơ hội rất hiếm! Hôm qua bạn Thiên An vừa nhận được 1 balo trị giá 350k đấy! Xem chi tiết :https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b
ALFAZI THƯƠNG HIỆU HỌC TẬP SỐ 1 VN!
với các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau
Gọi số cần tìm là abcde ( e chẵn và các chữ số khác nhau từng đôi một )
TH1 : e = 0
Chọn e : 1 cách
Chọn a :5 cách
chọn b :4 cách
chọn c :3 cách
chọn d :2 cách
=> Theo Quy tắc nhân có : 1.5.4.3.2 = 120 .
TH2 : e # 0
Chọn e :2 cách
Chọn a :4 cách
chọn b :4 cách
chọn c :3 cách
chọn d :2 cách
=> Theo quy tắc nhân có :2.4.4.3.2 = 192
=> Có tất cả 192 +120 =312 số chẵn có 5 chữ số khác nhau
-
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
b có bao nhiêu số chẵn có 5 chữ số
a) có thể lập được 600 số
b) có thể lập được 200 số
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên thỏa mãn:
a. Có 5 chữ số khác nhau
b. Là số chẵn có 5 chữ số khác nhau
c. Có 5 chữ số khác nhau và chia hết cho 5
Số tự nhiên đó có dạng \(\overline{abcde}\)
a, a có 5 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
d có 3 cách chọn.
e có 2 cách chọn.
\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.
b, TH1: \(e=0\)
a có 5 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.
TH2: \(e\ne0\)
a có 5 cách chọn.
e có 2 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.
Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.
c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.
TH2: \(e=5\)
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.
Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên: a) Có 3 chữ số khác nhau b) Có 3 chữ số chẵn khác nhau c) Có 3 chữ số lẻ khác nhau
a: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
b: \(\overline{abc}\)
a có 2 cách
b có 2 cách
c có 1 cách
=>Có 2*2*1=4 cách
c: \(\overline{abc}\)
a có 3 cách
b có 2 cách
c có 1 cách
=>Có 3*2*1=6 cách
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3.
Ta "dán" 2 chữ số 3 và 3 liền với nhau thành chữ số kép. Có hai cách "dán" (23 hoặc 32). Bài toán trở thành: có 5 chữ số 0,1,4,5, số kép. Hỏi có thể lập được bao nhiêu số tự nhiên mỗi số có 5 chữ số khác nhau.
Ta giải bằng quy tắc nhân như sau:
Bước 1: Dán 2 số 2 và 3 với nhau. Có \(n_1\) = 2 cách
Bước 2: Số hàng vạn có \(n_2\) = 4 cách chọn (trừ số 0)
Bước 3: Số hàng nghìn có \(n_3\) = 4 cách chọn
Bước 4: Số hàng trăm có \(n_4\) = 3 cách chọn
Bước 5: Số hàng chực có \(n_5\) = 2 cách chọn
Bước 6: Số hàng đơn vị có \(n_6\) = 1 cách chọn
Theo quy tắc nhân số các số cần chọn là
n = \(n_1\)\(n_2\)\(n_3\)\(n_4\)\(n_5\)\(n_6\) = 2.4.4.3.2.1 = 192
Vậy có 192 số cần tìm.
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và chia hết cho 3?
Một số tự nhiên ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ có 5 chữ số chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3.
Nhận thấy một số tự nhiên thoả yêu cầu sẽ không đồng thời có mặt các chữ số 0 và 3.
Do đó ta chia làm 2 trường hợp:
TH1: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 0.
Khi đó 5 chữ số còn lại có tổng của chúng chia hết cho 3, nên số số tự nhiên thoả mãn là 5! số.
TH2: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 3 (khi đó ta còn 5 chữ số là 0; 1; 2; 4; 5 có tổng của chúng chia hết cho 3).
Suy ra trường hợp này ta có 4.4!4.4! số.
Vậy theo quy tắc cộng ta có tất cả 5!+4.4!=2165!+4.4!=216 số .
Với các chữ số 0,1,2,3,4,5,có thể lập được bao nhiêu a, số lẻ gồm 4 chữ số khác nhau b, số chẵn gồm 4 chữ số khác nhau
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số gồm 3 chữ số đôi một khác nhau không chia hết cho 9
Cho các chữ số 0,1,2,3,4,5 hỏi có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau từ các chữ số trên.
Trả lời và giải thích cho mình nhé ( ai đúng mình tick.)
Ta gọi số cần tìm là : abc . ( a , b , c là những chữ số khác nhau ) .
Chữ số a có 5 cách chọn .
Chữ số b có 6 cách chọn .
Chữ số c có 6 cách chọn .
Các số tự nhiên có 3 chữ số khác nhau là :
5 x 6 x 6 = 180 ( số ) .
Đáp số : 180 số .
Gọi số cần tìm là : abc (a,b,c khác nhau)
Khi đó :
a có 5 cách chọn (khác 0)
b có 5 cách chọn (khác chữ số của a)
c có 4 cách chọn (khác chữ số của a,b)
Lập được : 5 x 5 x 4 = 100 (số)