Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Taehyung
Xem chi tiết
Trần Quốc Lộc
28 tháng 7 2018 lúc 11:05

a) Để y là hàm số bậc nhất

\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)

b;c Tương tự.

Nguyễn Thu Hà
Xem chi tiết
alibaba nguyễn
3 tháng 11 2016 lúc 20:15

a/ Để hàm số này là hàm bậc nhất thì

\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)

Các câu còn lại làm tương tự nhé bạn

phamtruongtu
3 tháng 11 2016 lúc 20:11

NHAMMATTAOCUNGLAMDUOC

alibaba nguyễn
3 tháng 11 2016 lúc 20:18

\(\orbr{\begin{cases}n=\frac{1}{3}va\:\:m\ne\frac{-3}{4}\\m=-\frac{2}{3}\end{cases}}\)

Mình nhầm sorry nhé

Phương Mỹ Linh
Xem chi tiết
Phương Mỹ Linh
15 tháng 9 2020 lúc 18:44

mình làm tới bước này rồi nhờ mọi người giải tiếp với với cách xét m,n cùng lẻ và m,n khác tính chẵn lẽ nhé 1

Khách vãng lai đã xóa
Đặng Gia Ân
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Nguyễn Ngọc Thảo
Xem chi tiết
Tạ Duy Phương
27 tháng 11 2015 lúc 12:54

Ta có: 2m2 + 3 + n2 > 0 . Xét:

\(\Delta=\left(m-1\right)^2+4\left(2m^2+n^2+3\right)\left(m^2-2mn+n^2+2\right)\)

\(=m^2-2m+1+4\left(2m^4-4m^3n+3m^2n^2+2m^2-2mn^3+n^4+5n^2+3m^2-6mn+6\right)\)

\(=m^2-2m+1+8m^4-16m^3n+12m^2n^2+8m^2-8mn^3+4n^4+20n^2+12m^2-26mn+24\)\(=8m^4+4n^4-16m^3n-8mn^3+12m^2n^2+21m^2+20n^2-26mn-2m+25\)

 

Nguyễn Khải Thi
27 tháng 11 2015 lúc 13:08

đồng ý kiến với Tạ Duy Phương

Tạ Duy Phương
27 tháng 11 2015 lúc 13:09

Khi ac < 0  thì PT có nghiệm vì khi đó  \(\Delta=b^2-4ac>0\)

Ta có: 2m+ n2 + 3 > 0 

\(-m^2+2mn-n^2-2=-2-\left(m-n\right)^2<0\)

=> đpcm

trịnh khánh duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 7:45

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3

Nguyễn Bạch Gia Chí
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2019 lúc 7:30

\(P=mn\left[\left(mn+1\right)^2-\left(m+n\right)^2\right]\)

\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)

\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)

\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)

Ta có \(\left\{{}\begin{matrix}\left(m-1\right)m\left(m+1\right)\\\left(n-1\right)n\left(n+1\right)\end{matrix}\right.\) đều là tích của 3 số nguyên liên tiếp nên đều chia hết cho 6

\(\Rightarrow P⋮36\)

Khách vãng lai đã xóa
Hoàng Diệu Linh
Xem chi tiết
Bùi Ngọc Linh
23 tháng 4 2020 lúc 8:53

225=15 mũ 2 

=> 2 [ 7 (m+n)2 +2mn] chia hết cho 15 mũ 2

=>14 + mn2 +4mn chia hết cho 15 mũ 2

=>14 (m+n)2 +[(m+n)2 -(m-n)2] chia hết cho 15 mũ 2 

=>15(m+n)2 - (M-n)2 chia hết cho 15 mũ 2 

vì 15(m+n)2 chia hết cho 15 mũ 2 => 15(m-n)2 chia hết cho 15 mũ 2

=>{m-n)2 chia hết cho 3 <=>{ m - n chia hết cho 3

     {(m-n)2 chia hết cho 5 <=> m-n chia hết cho 5

mà 3,5 =1=> m-n chia hết cho 15

=>(m-n)2 chia hết cho 15 mũ 2

tương tự (m+n)2 chia hết cho 15 mũ 2

=> mn chia hết cho 225

Khách vãng lai đã xóa
Nhật Nguyễn Đình Minh
Xem chi tiết
Thắng  Hoàng
27 tháng 9 2017 lúc 20:51

?????@