2m²-mn/2mn-n²=m/n
Tìm m,n để mỗi hàm số sau là hàm số bậc nhất:
a) y = (3m-1) (2n+3)x2 - (4n+3)x - 5n2 + mn - 1
b) y = (m2-2mn+n2)x2 - (3n+n)x - 5(m-n) + 3m2 + 1
c) y = (2mn+2m-n-1)x2 + (mn+2m-3n-6)x + mn2 - 2m + 1
a) Để y là hàm số bậc nhất
\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)
b;c Tương tự.
tìm m và n để trong mỗi hàm số sau là hàm số bậc nhất:
a, \(y=\left(3n-1\right)\left(2m+3\right)x^2-\left(4m+3\right)x-5m^2+mn-1\)
b, \(y=\left(m^2-2mn+n^2\right)x^2-\left(3m+n\right)x-5\left(m-n\right)+1\)
c, \(y=\left(m-1\right)\left(n+3\right)x^2-2\left(m+1\right)\left(n-3\right)x-4mn+3\)
d, \(y=\left(2mn+2m-n-1\right)x^2+\left(mn+2m-3n-6\right)x+mn^2-2m+1\)
giúp mk vs m.n ơi!!!!! camon m.n nhìu nà!!! :)))
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
\(\orbr{\begin{cases}n=\frac{1}{3}va\:\:m\ne\frac{-3}{4}\\m=-\frac{2}{3}\end{cases}}\)
Mình nhầm sorry nhé
cho(m,n)=1. Tìm (A,B) với A=m+n . B= m^2+n^2
Giả sử: d=(m+n,m2+n2)
⇒ m+n ⋮ d và m^2+n^2 ⋮ d
⇒m^2+n^2+2mn ⋮ dvà m^2+n^2 ⋮ d
⇒2mn⋮ d và m+n ⋮ d
⇒2m(m+n) -2mn ⋮ d và 2n(m+n)−2mn ⋮ d
⇒2m^2 ⋮ d và 2n^2 ⋮ d
mình làm tới bước này rồi nhờ mọi người giải tiếp với với cách xét m,n cùng lẻ và m,n khác tính chẵn lẽ nhé 1
Cho(m,n)=1. Tìm (A,B) với A=m+n . B= m^2+n^2
Giả sử: d=(m+n,m2+n2)
⇒ m+n ⋮ d và m^2+n^2 ⋮ d
⇒m^2+n^2+2mn ⋮ dvà m^2+n^2 ⋮ d
⇒2mn⋮ d và m+n ⋮ d
⇒2m(m+n) -2mn ⋮ d và 2n(m+n)−2mn ⋮ d
⇒2m^2 ⋮ d và 2n^2 ⋮ d
Mình làm đến bước này rồi nhờ mấy bạn làm tiếp bằng cách xét m,n cùng lẻ và m, n khác tính chẵn lẻ nhé
Thực hiện phép tính:
a)\(\frac{4n}{2n-m}+\frac{2m}{m-2n}\)
b)\(\frac{2mn^3}{n^2-9}.\frac{n^2-6n+9}{2mn^3}\)
Chứng minh phương trình sau luôn có nghiệm với mọi m, n
\(y=x^2\left(2m^2+3+n^2\right)-x\left(m-2m+1\right)-m^2+2mn-n^2-2=0\)
Ta có: 2m2 + 3 + n2 > 0 . Xét:
\(\Delta=\left(m-1\right)^2+4\left(2m^2+n^2+3\right)\left(m^2-2mn+n^2+2\right)\)
\(=m^2-2m+1+4\left(2m^4-4m^3n+3m^2n^2+2m^2-2mn^3+n^4+5n^2+3m^2-6mn+6\right)\)
\(=m^2-2m+1+8m^4-16m^3n+12m^2n^2+8m^2-8mn^3+4n^4+20n^2+12m^2-26mn+24\)\(=8m^4+4n^4-16m^3n-8mn^3+12m^2n^2+21m^2+20n^2-26mn-2m+25\)
Khi ac < 0 thì PT có nghiệm vì khi đó \(\Delta=b^2-4ac>0\)
Ta có: 2m2 + n2 + 3 > 0
\(-m^2+2mn-n^2-2=-2-\left(m-n\right)^2<0\)
=> đpcm
Bài 1 toán 9 tìm m và n để các hàm số sau bâc nhất
a, y=(3m-1)(2m+3)x2 - (4m+3)x-5m2+mn-1
b, y=(m2-2mn+2n2)x2-(3m+n)x-5(m-n)+3m2+1
c, y=(m2-5m+6)x2+(m2+mn+6n2)x+3
a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0
hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)
Trường hợp 1: m=2
\(\Leftrightarrow4+2n+6n^2< >0\)
Đặt \(6n^2+2n+4=0\)
\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)
Do đó: \(4+2n+6n^2< >0\forall n\)
Trường hợp 2: m=3
\(\Leftrightarrow9+3n+6n^2< >0\)
Đặt \(6n^2+3n+9=0\)
\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)
Do đó: \(6n^2+3n+9\ne0\forall n\)
Vậy: m=2 hoặc m=3
Cho các số nguyên m, n. Chứng minh \(mn\left(mn+1\right)^2-\left(m+n\right)^2mn\) chia hết cho 36
\(P=mn\left[\left(mn+1\right)^2-\left(m+n\right)^2\right]\)
\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)
\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)
\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)
Ta có \(\left\{{}\begin{matrix}\left(m-1\right)m\left(m+1\right)\\\left(n-1\right)n\left(n+1\right)\end{matrix}\right.\) đều là tích của 3 số nguyên liên tiếp nên đều chia hết cho 6
\(\Rightarrow P⋮36\)
Cho m,n là 2 số nguyên.Chứng minh rằng nếu 7(m+n)2+2mn chia hết cho 225 thì mn cũng chia hết cho 225
225=15 mũ 2
=> 2 [ 7 (m+n)2 +2mn] chia hết cho 15 mũ 2
=>14 + mn2 +4mn chia hết cho 15 mũ 2
=>14 (m+n)2 +[(m+n)2 -(m-n)2] chia hết cho 15 mũ 2
=>15(m+n)2 - (M-n)2 chia hết cho 15 mũ 2
vì 15(m+n)2 chia hết cho 15 mũ 2 => 15(m-n)2 chia hết cho 15 mũ 2
=>{m-n)2 chia hết cho 3 <=>{ m - n chia hết cho 3
{(m-n)2 chia hết cho 5 <=> m-n chia hết cho 5
mà 3,5 =1=> m-n chia hết cho 15
=>(m-n)2 chia hết cho 15 mũ 2
tương tự (m+n)2 chia hết cho 15 mũ 2
=> mn chia hết cho 225
cách biến đổi từ 2m- n thành 2mn???