Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Hà Thị Thanh Xuân
Xem chi tiết
Phước Nguyễn
5 tháng 11 2015 lúc 10:05

Bài 1. 

a. \(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)=15^4-\left(15^4-1\right)=1\)

b. \(x=11\Rightarrow x+1=12\)

Từ đây, ta có: \(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+111=-x+111=-11+111=100\)

Bài 2. 

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

Maria Ozawa
Xem chi tiết
Min
6 tháng 8 2019 lúc 9:22

a) \(x^2-12x+11\)\(=0\)

\(\Leftrightarrow\left(x-6\right)^2-25=0\)

\(\Leftrightarrow\left(x-6+5\right)\left(x-6-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)

Nguyễn Thị Thúy Ngân
6 tháng 8 2019 lúc 9:49

a)\(x^2-12x+11=0\)

\(x^2-x-11x+11=0\)

\(\left(x^2-x\right)-\left(11x-11\right)=0\)

\(x\left(x-1\right)-11\left(x-1\right)=0\)

\(\left(x-1\right)\left(x-11\right)=0\)

\(=>\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)

b)\(4x^2-4x-3=0\)

\(4x^2-2x+6x-3=0\)

\(2x\left(2x-1\right)+3\left(3x-1\right)=0\)

\(\left(2x-1\right)\left(2x+3\right)=0\)

\(=>\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=0,5\\x=-1,5\end{matrix}\right.\)\

c)\(4x^2-12x-7=0\)

\(4x^2-14x+2x-7=0\)

\(2x\left(2x-7\right)+\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(2x+1\right)=0\)

\(=>\left[{}\begin{matrix}2x-7=0\\2x+1=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)

Nguyễn Thị Thúy Ngân
6 tháng 8 2019 lúc 9:58

d)\(x^3-6x^2=8-12x\)

\(=>\left(x^3-6x^2\right)-\left(8-12x\right)=0\)

\(=>x^3-6x^2-8+12x=0\)

\(x^3-3x^2.2+3x.2^2-2^3=0\)

\(\left(x-2\right)^3=0\)

\(=>x-2=0\)

\(=>x=2\)

Lam Anh Ngọc
Xem chi tiết
Hang Vu
27 tháng 7 2023 lúc 20:22

chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn

 

câu 1: 9\(x^2\) + 12\(x\) + 5  =11

           (3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11

           (3\(x\) + 2)2      =  11 - 1

             (3\(x\) + 2)2    = 10

               \(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)

                \(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)

                  \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)

                 Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)

  Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)

              6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0

              4\(x^2\) + 16\(x\) + 12 = 0

              (2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0

               (2\(x\) + 4)2   = 4

               \(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\) 

                \(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)

                 \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

              S = { -3; -1}

3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5

    16\(x^2\) + 22\(x\) - 6\(x\)  + 11 - 5 = 0

     16\(x^2\) + 16\(x\) + 6 = 0

      (4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0

       (4\(x\) + 2)2 + 2 = 0 (1) 

Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm

             S = \(\varnothing\)

Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\) 

            12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0

            9\(x^2\) + 24\(x\) + 10 = 0

           (3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0

          (3\(x\) + 4)2 = 6

            \(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)

                    S = {\(\dfrac{-\sqrt{6}-4}{3}\)\(\dfrac{\sqrt{6}-4}{3}\)}

                     

            

Phạm Khánh Huyền
Xem chi tiết
Nguyễn Quang Linh
6 tháng 10 2015 lúc 20:15

a/ 34.54-(152+1)(152-1)

 =154-(154-152+152-1)

 =154-154+1=1

b/ x4-12x3+12x2-12x+111

 =x4-x3-11x3+11x2+x2-x-11x+11+100

=x3(x-1)-11x2(x-1)+x(x-1)-11(x-1)+100

=(x3-11x2+x-11)(x-11)+100

Thay x=11 vào ta được:

=(113-11.112+11-11)(11-11)+100

=0.10+100=100

Trịnh Khánh Linh
Xem chi tiết
Nguyễn Trần Đức Huy
Xem chi tiết
Diệu Huyền
6 tháng 11 2019 lúc 22:19

Phép nhân và phép chia các đa thức

Khách vãng lai đã xóa
nguyen my chi
Xem chi tiết
Sarah
7 tháng 7 2017 lúc 19:16

Ta có : x4 - 12x3 + 12x2 - 12x + 111 

= x3(x - 12) + 12x(x - 1) + 111

Thay x = 11 vào => 113(11 - 12) + 12.11.(11 - 1) + 111

= 113 + 120.11 + 111

= 121.11 + 120.11 + 111

= 11(121 + 120) + 111

= 11.241 + 111

= 2651 + 111

= 2762

Xấu Không Cần Hư Cấu
Xem chi tiết
Nguyễn Huệ Lam
10 tháng 7 2017 lúc 7:55

Cách 1:

Ta có:

\(A=x^4-12x^3+12x^2-12x+111=x^4-11x^3-x^3+11x^2+x^2-11x-x+11+100\)

\(=\left(x^4-11x^3\right)-\left(x^3-11x^2\right)+\left(x^2-11x\right)-\left(x-11\right)+100\)

\(=x^3\left(x-11\right)-x^2\left(x-11\right)+x\left(x-11\right)-\left(x-11\right)+100\)

\(=\left(x-11\right)\left(x^3-x^2+x-1\right)+100\)

Thay x=11 vào biểu thức trên ta được:

\(A=\left(11-11\right).\left(11^3-11^2+11-1\right)+100\)

\(=0.\left(11^3-11^2+11-1\right)+100=0+100=100\)

Vậy A=100

Cách 2:

Ta thấy;

\(x=11\Leftrightarrow x+1=12\)

Thay x+1=12 vào biểu thức A ta được:

\(A=x^4-\left(x+1\right).x^3+\left(x+1\right).x^2-\left(x+1\right).x+111\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)

\(=-x+111=-11+111=100\)

Vậy A=100

Cô bé nhỏ
Xem chi tiết
Nguyễn Huy Tú
28 tháng 4 2017 lúc 13:46

\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)

Thay x = 11 ta có:

\(A=11^{100}-12.11^{99}+12.11^{98}-...-12.11^3+12.11^2-12.11+12\)

\(=11^{100}-12\left(11^{99}-11^{98}+11^{97}-...+11^3-11^2+11\right)+12\)

Đặt \(B=11^{99}-11^{98}+...+11\)

\(\Rightarrow11B=11^{100}-11^{99}+...+11^2\)

\(\Rightarrow12B=11^{100}+11\)

\(\Rightarrow B=\dfrac{11^{100}+11}{12}\)

Từ đó, \(A=11^{100}-12.\dfrac{11^{100}+11}{12}+12\)

\(=11^{100}-11^{100}-11+12=1\)

Vậy A = 1

Nguyễn Thị Huyền Trang
29 tháng 4 2017 lúc 11:34

Ta có: \(x=11\Rightarrow x+1=12\)

Khi đó, ta được:

\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)

\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-\left(x+1\right)x^{97}+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+12\)

\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-x^{98}-x^{97}+...-x^4-x^3+x^3+x^2-x^2-x+12\)

\(=\left(x^{100}-x^{100}\right)-\left(x^{99}-x^{99}\right)+\left(x^{98}-x^{98}\right)-...-\left(x^3-x^3\right)+\left(x^2-x^2\right)-x+12\)

\(=0-x+12=0-11+12=-11+12=1\)

Vậy tại x=11 thì A=1