11/12x-(2/5+x)=2/3
1) 2-x/16= -4/x-2
j) 3/x-5=-4/x+2
h) 3-x/5-x= ( -3/5)^2
v) 12x-15y/7 = 20z-12x/9 = 15y-20z/11 và x+y+z= 48
s) 1+2y/18 = 1+4y/24 = 1+6y/6x
Bài 1 Tính Nhanh
a)3^4 . 5^4 - (15^2+1)(15^2-1)
b)x^4-12x^3+12x^2-12x+111 tại x = 11
Bài 2 Rút gọn
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
Bài 1.
a. \(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)=15^4-\left(15^4-1\right)=1\)
b. \(x=11\Rightarrow x+1=12\)
Từ đây, ta có: \(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+111=-x+111=-11+111=100\)
Bài 2.
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
BÀi 5
a) x^2 - 12 x + 11 = 0
b) 4x^2 - 4x - 3 = 0
c) 4x^2 - 12x - 7 = 0
d) x^3 - 6x^2 = 8 - 12x
a) \(x^2-12x+11\)\(=0\)
\(\Leftrightarrow\left(x-6\right)^2-25=0\)
\(\Leftrightarrow\left(x-6+5\right)\left(x-6-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)
a)\(x^2-12x+11=0\)
\(x^2-x-11x+11=0\)
\(\left(x^2-x\right)-\left(11x-11\right)=0\)
\(x\left(x-1\right)-11\left(x-1\right)=0\)
\(\left(x-1\right)\left(x-11\right)=0\)
\(=>\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)
b)\(4x^2-4x-3=0\)
\(4x^2-2x+6x-3=0\)
\(2x\left(2x-1\right)+3\left(3x-1\right)=0\)
\(\left(2x-1\right)\left(2x+3\right)=0\)
\(=>\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=0,5\\x=-1,5\end{matrix}\right.\)\
c)\(4x^2-12x-7=0\)
\(4x^2-14x+2x-7=0\)
\(2x\left(2x-7\right)+\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(2x+1\right)=0\)
\(=>\left[{}\begin{matrix}2x-7=0\\2x+1=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
d)\(x^3-6x^2=8-12x\)
\(=>\left(x^3-6x^2\right)-\left(8-12x\right)=0\)
\(=>x^3-6x^2-8+12x=0\)
\(x^3-3x^2.2+3x.2^2-2^3=0\)
\(\left(x-2\right)^3=0\)
\(=>x-2=0\)
\(=>x=2\)
1. 9x^2 + 12x + 5 = 11
2. 6x^2 + 16x + 12 = 2x^2
3. 16x^2 + 22x + 11 = 6x + 5
4. 12x^2 + 20x + 10 = 3x^2 - 4x
giúp mình với ạ
chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn
câu 1: 9\(x^2\) + 12\(x\) + 5 =11
(3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11
(3\(x\) + 2)2 = 11 - 1
(3\(x\) + 2)2 = 10
\(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)
Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)}
Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)
6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0
4\(x^2\) + 16\(x\) + 12 = 0
(2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0
(2\(x\) + 4)2 = 4
\(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
S = { -3; -1}
3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5
16\(x^2\) + 22\(x\) - 6\(x\) + 11 - 5 = 0
16\(x^2\) + 16\(x\) + 6 = 0
(4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0
(4\(x\) + 2)2 + 2 = 0 (1)
Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm
S = \(\varnothing\)
Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\)
12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0
9\(x^2\) + 24\(x\) + 10 = 0
(3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0
(3\(x\) + 4)2 = 6
\(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)
S = {\(\dfrac{-\sqrt{6}-4}{3}\); \(\dfrac{\sqrt{6}-4}{3}\)}
TÍNH NHANH GIÁ TRỊ MỖI BIỂU THỨC SAU
34 . 54 - ( 152+1)(152-1)
x4 -12x3 +12x2-12x+111 tại x=11
a/ 34.54-(152+1)(152-1)
=154-(154-152+152-1)
=154-154+1=1
b/ x4-12x3+12x2-12x+111
=x4-x3-11x3+11x2+x2-x-11x+11+100
=x3(x-1)-11x2(x-1)+x(x-1)-11(x-1)+100
=(x3-11x2+x-11)(x-11)+100
Thay x=11 vào ta được:
=(113-11.112+11-11)(11-11)+100
=0.10+100=100
A= x^2 + 11x + 3
B= x^2 - 12x + 5
C= 3x^2 + 7 + 4
D= 7x^2 + 8x + 10
M= 16x^2 - 24x + 11
E= -3x^2 + 12x + 8
F= -25x^2 - 50x + 3
x4 - 12x3 + 12x2 - 12x + 111 TẠI x = 11
Tính nhanh giá trị của mỗi biểu thức sau
a)1,62+4*0,8*3,4+3,42
b)34*54-(152+1)*(152-1)
c)x4-12x3+12x2-12x+111 tại x=11
Ta có : x4 - 12x3 + 12x2 - 12x + 111
= x3(x - 12) + 12x(x - 1) + 111
Thay x = 11 vào => 113(11 - 12) + 12.11.(11 - 1) + 111
= 113 + 120.11 + 111
= 121.11 + 120.11 + 111
= 11(121 + 120) + 111
= 11.241 + 111
= 2651 + 111
= 2762
Giai bằng 2 cách : \(x^4-12x^3+12x^2-12x+111\)tại x = 11
Nhanh nhất đc tick 3 tick...
Cách 1:
Ta có:
\(A=x^4-12x^3+12x^2-12x+111=x^4-11x^3-x^3+11x^2+x^2-11x-x+11+100\)
\(=\left(x^4-11x^3\right)-\left(x^3-11x^2\right)+\left(x^2-11x\right)-\left(x-11\right)+100\)
\(=x^3\left(x-11\right)-x^2\left(x-11\right)+x\left(x-11\right)-\left(x-11\right)+100\)
\(=\left(x-11\right)\left(x^3-x^2+x-1\right)+100\)
Thay x=11 vào biểu thức trên ta được:
\(A=\left(11-11\right).\left(11^3-11^2+11-1\right)+100\)
\(=0.\left(11^3-11^2+11-1\right)+100=0+100=100\)
Vậy A=100
Cách 2:
Ta thấy;
\(x=11\Leftrightarrow x+1=12\)
Thay x+1=12 vào biểu thức A ta được:
\(A=x^4-\left(x+1\right).x^3+\left(x+1\right).x^2-\left(x+1\right).x+111\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)
\(=-x+111=-11+111=100\)
Vậy A=100
A=x^100-12x^99+12x^98-12x^97+........-12x^3+12x^2-12x+12
Tính giá trị của A tại x=11
\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)
Thay x = 11 ta có:
\(A=11^{100}-12.11^{99}+12.11^{98}-...-12.11^3+12.11^2-12.11+12\)
\(=11^{100}-12\left(11^{99}-11^{98}+11^{97}-...+11^3-11^2+11\right)+12\)
Đặt \(B=11^{99}-11^{98}+...+11\)
\(\Rightarrow11B=11^{100}-11^{99}+...+11^2\)
\(\Rightarrow12B=11^{100}+11\)
\(\Rightarrow B=\dfrac{11^{100}+11}{12}\)
Từ đó, \(A=11^{100}-12.\dfrac{11^{100}+11}{12}+12\)
\(=11^{100}-11^{100}-11+12=1\)
Vậy A = 1
Ta có: \(x=11\Rightarrow x+1=12\)
Khi đó, ta được:
\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)
\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-\left(x+1\right)x^{97}+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+12\)
\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-x^{98}-x^{97}+...-x^4-x^3+x^3+x^2-x^2-x+12\)
\(=\left(x^{100}-x^{100}\right)-\left(x^{99}-x^{99}\right)+\left(x^{98}-x^{98}\right)-...-\left(x^3-x^3\right)+\left(x^2-x^2\right)-x+12\)
\(=0-x+12=0-11+12=-11+12=1\)
Vậy tại x=11 thì A=1