\(x^2-xy+3x-3y\)
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
a)\(\frac{xy+3y}{xy}\)
b)\(\frac{x^2+3x-y^2-3y}{x^2-y^2}\)
c) \(\frac{-3x+3y}{x-y}\)
a, \(\frac{xy+3y}{xy}=\frac{y\left(x+3\right)}{xy}=\frac{x+3}{x}\)
b, \(\frac{x^2+3x-y^2-3y}{x^2-y^2}=\frac{\left(x^2-y^2\right)+3\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)\left(x+y+3\right)}{\left(x-y\right)\left(x+y\right)}\)
=\(\frac{x+y+3}{x+y}=1\frac{3}{x+y}\)
c, \(\frac{-3x+3y}{x-y}=\frac{-3\left(x-y\right)}{x-y}=-3\)
a)(3x^2-4)(x+3y) b)(c+3)(x^2+3x) c)(xy-1)(xy+5) d)(3x+5y)(2x-7y) e)-(x-1)(-x^2+2y) f)(-x^2+2y)(x^2+2y)
a: (3x^2-4)(x+3y)
=3x^2*x+3x^2*3y-4x-4*3y
=3x^3+9x^2y-4x-12y
b: (c+3)(x^2+3x)
=c*x^2+c*3x+3x^2+9x
=cx^2+3cx+3x^2+9x
c: (xy-1)(xy+5)
=xy*xy+5xy-xy-5
=x^2y^2+4xy-5
d: (3x+5y)(2x-7y)
=3x*2x-3x*7y+5y*2x-5y*7y
=6x^2-21xy+10xy-35y^2
=6x^2-11xy-35y^2
e: -(x-1)(-x^2+2y)
=(x-1)(x^2-2y)
=x^3-2xy-x^2+2y
f: (-x^2+2y)(x^2+2y)
=(2y)^2-x^4
=4y^2-x^4
Thực hiện phét tính 2x^3+5c^3 7x^2 x (2x^3+3x^5) (x^3y^2-2x^2-3x^3+xy^4):xy^2
\(2x^3+5c^3=2x^3+5x^3\)
\(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)
\(\dfrac{\left(x^3y^2-2x^2-3x^3+xy^4\right)}{xy^2}\)
\(=\dfrac{xy^2\cdot x^2-x\cdot2x-x\cdot3x^2+xy^2\cdot y^2}{xy^2}\)
\(=x^2-\dfrac{2x}{y^2}-\dfrac{3x^2}{y^2}+y^2\)
Phân tích đa thức sau thành nhân tử:
a) (xy +1)^2 - (x-y)^2
b) (x + y)^3 - (x - y)^3
c) 3x^4y^2 + 3x^3y^2 + 3xy^2 + 3y^2
a, \(=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
b, \(\left(x+y-x+y\right)[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2]\)
\(=2y[x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2]\)
\(=2y\left(3x^2+y^2\right)\)
c,\(=3\left(x+1\right)^2\left(x^2-x+1\right)y^2\)
câu a, b áp dụng hằng đẳng thức rồi làm nha
c) 3x4y2 + 3x3y2 + 3xy2 + 3y2
= ( 3x4y2 + 3x3y2 ) + ( 3xy2 + 3y2 )
= 3x3y2 ( x + 1) + 3y2 ( x + 1 )
= ( 3x3y2 + 3y2 ) ( x + 1 )
= 3y2 ( x3 + 1 ) ( x + 1 )
= 3y2 ( x + 1 ) ( x2 - x + 1 ) ( x + 1 )
= 3y2 ( x + 1 )2 ( x2 - x + 1 )
a) (xy +1)2- (x-y)2
=(xy +1-x+y)(xy+1+x-y)
b) (x + y)3 - (x - y)3
= (x+y-x+y)((x+y)2+(x+y)(x-y)+(x - y)2)
= 2y(x2+2xy+y2+x2+xy-xy-y2+x2-2xy+y2)
=2y(3x2+y2)
c) 3x4y2 + 3x3y2 + 3xy2 + 3y2
=3y2(x4+x3+x+1)
= 3y2(x3(x+1)+(x+1)
= 3y2(x+1)(x3+1)
ko bt đúng ko
phân tích thành nhân tử
\(xy-3x-y^2 +3y\)
\(x^2 +2x-xy-2y\)
\(x^2 +5xy+x+5y\)
\(\dfrac{x^2+xy}{5x^2-5y^2}.\dfrac{3x^3-3y^3}{x^2-xy}\)
help me all bro
=\(^{\dfrac{-x^2-xy}{5\left(x^2-y^2\right)}}\).\(\dfrac{3\left(x^3-y^3\right)}{x^2-xy}\)
=\(\dfrac{-3\left(x-y\right)}{5}\)
BT11: Tìm hiệu A-B biết
\(a,-x^2y+A+2xy^2-B=3x^2y-4xy^2\)
\(b,5xy^2-A-6yx^2+B=-7xy^2+8x^2y\)
\(c,3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y\)
\(d,-6x^2y^3+A-3x^3y^2-B=2x^2y^3-7x^3y\)
\(e,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(f,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
Tìm các cặp số (x,y) biết:
2xy+x+2y=5;xy+3x-3y=5
xy+2x+2y=16;x+xy+y=9
xy-3x-y=0;9xy+3x+3y=51(x,y thuộcN*) 2x-5y+5xy=14
\(\left\{{}\begin{matrix}2xy+x+2y=5\\xy+3x-3y=5\end{matrix}\right.\)
\(\Rightarrow2xy+x+2y=xy+3x-3y\)
\(\Rightarrow2xy+x+2y-xy-3x+3y=0\)
\(\Rightarrow\left(2xy-xy\right)+\left(x-3x\right)+\left(2y+y\right)=0\)
\(\Rightarrow xy-2x+3y=0\)
\(\Rightarrow xy-2x+3y-6=-6\)
\(\Rightarrow x\left(y-2\right)+3\left(y-2\right)=-6\)
\(\Rightarrow\left(x+3\right)\left(y-2\right)=-6\)
Xét ước là xong,mấy câu kia tương tự
3x^2y^2+12x^2y^3+6x^3y^4= ?
8x^3-27=?
x^2-3x+xy-3y=?
x^2+6x+9-y^2=?
giúp mình với mn ơi đang cần gấpppp