BT11: Tìm hiệu A-B biết
\(a,-x^2y+A+2xy^2-B=3x^2y-4xy^2\)
\(b,5xy^2-A-6yx^2+B=-7xy^2+8x^2y\)
\(c,3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y\)
\(d,-6x^2y^3+A-3x^3y^2-B=2x^2y^3-7x^3y\)
\(e,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(f,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2