Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Milly BLINK ARMY 97
Xem chi tiết
nguyễn thị hương giang
20 tháng 10 2021 lúc 21:20

Câu 12.

   \(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)

\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)

\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)

\(=8\sqrt{a}\)

 

 

nguyễn thị hương giang
20 tháng 10 2021 lúc 21:24

Câu 13. Chọn C.

Do x,y\(\ge\)0, x\(\ne\)y ta có:

\(A=\dfrac{x-\sqrt{xy}}{x-y}=\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\cdot\left(\sqrt{x}+\sqrt{y}\right)}\)

    \(=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

Milly BLINK ARMY 97
20 tháng 10 2021 lúc 21:28

Nhờ mn giúp em với ạ, mn xem em làm bài đúng ko ạ?

Trọng Nguyễn
Xem chi tiết
⭐Hannie⭐
1 tháng 11 2023 lúc 21:59

Bài `13`

\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =\sqrt{9\cdot3}+\sqrt{16\cdot3}-\sqrt{36\cdot3}-\sqrt{4\cdot3}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =\left(3+4-6-2\right)\sqrt{3}\\ =-\sqrt{3}\\ b,\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\\ =\left(\sqrt{4\cdot7}+\sqrt{4\cdot3}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{4\cdot21}\\ =\left(2\sqrt{7}+2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\\ =2\cdot7+2\sqrt{21}-7+2\sqrt{21}\\ =14+2\sqrt{21}-7+2\sqrt{21}\\ =7+4\sqrt{21}\)

Nguyễn Lê Phước Thịnh
2 tháng 11 2023 lúc 0:13

17:
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{9;1\right\}\)

16:

a: BC=BH+CH

=9+16

=25(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)

b: M là trung điểm của AC

=>AM=AC/2=10(cm)

Xét ΔAMB vuông tại A có

\(tanAMB=\dfrac{AB}{AM}=\dfrac{15}{10}=\dfrac{3}{2}\)

nên \(\widehat{AMB}\simeq56^0\)

Thư Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 23:01

Câu 5:

a: Xét tứ giác AHMK có 

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó: AHMK là hình chữ nhật

Milly BLINK ARMY 97
Xem chi tiết
Milly BLINK ARMY 97
Xem chi tiết
Minh Hiếu
28 tháng 9 2021 lúc 21:04

a) \(\sqrt{x-5}=3\)

\(x-5=9\)

\(x=14\)

b) Vì \(\sqrt{x-10}\) ≥0

⇒không có x thỏa mãn

c) \(\sqrt{2x-1}=\sqrt{7}\)

\(2x-1=7\)

\(2x=8\)

\(x=4\)

OH-YEAH^^
28 tháng 9 2021 lúc 21:05

Bài 3

a) \(\sqrt{x-5}=3\)

\(\Rightarrow x-5=9\)

\(\Rightarrow x=14\)

b) \(\sqrt{x-10}=-21\)

\(\Rightarrow x\in\varnothing\)

c) \(\sqrt{2x-1}=\sqrt{7}\)

\(\Rightarrow2x-1=7\)

\(\Rightarrow2x=8\)

\(\Rightarrow x=4\)

 

Hero chibi
Xem chi tiết
HỌC TOÁN KO KHÓ
3 tháng 6 2016 lúc 10:17

Số dư lớn nhất là : 6

Muốn tìm số bị chia ta lấy số chia nhân  thương rồi cộng với số dư.

SỐ đó là: (7 x 8 ) + 6 = 62 .

Đáp số : 62

Dương Đức Hiệp
3 tháng 6 2016 lúc 10:17

Số dư lớn nhất có thể là : 6

Số đó là :

               7 x 8 + 6 = 62

Shana
3 tháng 6 2016 lúc 10:18

Số dư luôn bé hơn số chia nên số dư lớn nhất là : 7-1=6

Số cần tìm là:

8 x 7 + 6= 62

ĐS: 62

Vậy rõ chưa bạn??

Nguyễn Hồ Thảo Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 22:26

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

Mai Hân Nguyễn
Xem chi tiết
Nguyễn Thảo Linh
8 tháng 3 2017 lúc 16:02

Câu nào? Bạn nói rõ hơn được không?

Thuy Linh
Xem chi tiết
Thùy Dương
Xem chi tiết
Hồng Phúc
9 tháng 9 2021 lúc 15:17

3.

\(F=\dfrac{k.\left|q_1.q_2\right|}{r^2}=\dfrac{9.10^9.\left|9.10^{-18}\right|}{0,1^2}=8,1.10^{-6}N\)

Hồng Phúc
9 tháng 9 2021 lúc 15:15

2. C

Hồng Phúc
9 tháng 9 2021 lúc 15:16

1.

\(F=\dfrac{k.\left|q_1.q_2\right|}{r^2}=\dfrac{9.10^9.\left|5.10^8.\left(-1,6.10^{-19}\right).5.10^8.\left(-1,6.10^{-19}\right)\right|}{0,02^2}=1,44.10^{-7}N\)