Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thảo
Xem chi tiết

Ta có: \(A=\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)

\(\Leftrightarrow A+4=\frac{a-d}{d+b}+1+\frac{d-b}{b+c}+1+\frac{b-c}{c+a}+1+\frac{c-a}{a+d}+1\)

\(\Leftrightarrow A+4=\frac{a+b}{d+b}+\frac{d+c}{b+c}+\frac{b+a}{c+a}+\frac{c+d}{a+d}\)

\(\Leftrightarrow A+4=\left(a+b\right)\left(\frac{1}{d+b}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{xy}\)với mọi x,y>0 

Ta có: \(A+4\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(d+c\right)}{a+b+c+d}\)

\(A+4\ge\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(A\ge0\)(dpcm)

TXT Channel Funfun
Xem chi tiết
Darth Vader
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2019 lúc 22:58

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

Aeris
Xem chi tiết
Fire Sky
26 tháng 3 2019 lúc 15:30

\(Để\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

Thì \(\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\left(a+c\right)\left(\frac{4}{a+b+c+d}\right)+\left(b+d\right)\left(\frac{4}{a+b+c+d}\right)=4\)(Áp dụng Cô-si dạng phân thức)

\(\Rightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)(Đpcm)

   Học tốt ~~

Thắng Nguyễn
Xem chi tiết
alibaba nguyễn
2 tháng 12 2016 lúc 8:50

Đặt cái ban đầu là A

Dầu tiên ta có

\(\text{(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b)}\)

\(=4\left(a+b+c+d\right)^2\)

Ta có: \(\frac{a-b}{a+2b+c}+\frac{1}{2}=\frac{1}{2}.\frac{3a+c}{a+2b+c}=\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

Tương tự ta có

\(\frac{b-c}{b+2c+d}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}\)

\(\frac{c-d}{c+2d+a}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}\)

\(\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}\)

Cộng vế theo vế ta được

\(\frac{a-b}{a+2b+c}+\frac{1}{2}+\frac{b-c}{b+2c+d}+\frac{1}{2}+\frac{c-d}{c+2d+a}+\frac{1}{2}+\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}+\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}+\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}+\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

\(\ge\frac{1}{2}.\frac{\left(3a+c+3b+d+3c+a+3d+b\right)^2}{\left(3a+c\right)\left(a+2b+c\right)+\left(3b+d\right)\left(b+2c+d\right)+\left(3c+a\right)\left(c+2d+a\right)+\left(3d+b\right)\left(d+2a+b\right)}\)

\(=\frac{1}{2}.\frac{16\left(a+b+c+d\right)^2}{4\left(a+b+c+d\right)^2}=2\)

\(\Rightarrow A+2\ge2\)

\(\Leftrightarrow A\ge0\)

nguyenphuhoanganh
4 tháng 12 2016 lúc 17:27

=4(a+b+c+d)2

Ta có: a−ba+2b+c +12 =12 .3a+ca+2b+c =12 .(3a+c)2(3a+c)(a+2b+c) 

Tương tự ta có

b−cb+2c+d +12 =12 .(3b+d)2(3b+d)(b+2c+d) 

c−dc+2d+a +12 =12 .(3c+a)2(3c+a)(c+2d+a) 

d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) 

Cộng vế theo vế ta được

a−ba+2b+c +12 +b−cb+2c+d +12 +c−dc+2d+a +12 +d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) +12 .(3c+a)2(3c+a)(c+2d+a) +12 .(3b+d)2(3b+d)(b+2c+d) +12 .(3a+c)2(3a+c)(a+2b+c) 

≥12 .(3a+c+3b+d+3c+a+3d+b)2(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b) 

=12 .16(a+b+c+d)24(a+b+c+d)2 =2

⇒A+2≥2

Nguyễn Thiều Công Thành
Xem chi tiết
Cố gắng hơn nữa
16 tháng 8 2017 lúc 15:15

bài này thật ra không khó chỉ cần tách đúng là được à bạn thử ngồi tách xem đi 

Cố gắng hơn nữa
16 tháng 8 2017 lúc 15:31

rồi được rồi nhưng hơi dài nên mình sẽ viết 2 lần nhé

Cố gắng hơn nữa
16 tháng 8 2017 lúc 15:47

do a;b;c;d bình đẳng với nhau nên ta đặt \(a\ge b\ge c\ge d>0\).Ta có:

Đặt cả cái bài là A => \(A\ge\frac{\left(a-b\right)\left(a-c\right)+\left(b-c\right)\left(b-d\right)+\left(c-d\right)\left(c-a\right)+\left(a-d\right)\left(b-d\right)}{3a}\)

đặt cái trên nhé là B => \(B=\frac{a^2+b^2+c^2+d^2-2ac-2bd}{3a}\)

mà \(a^2+b^2+c^2+d^2\ge2ac+2bd\)=> \(a^2+b^2+c^2+d^2-2ac-2bd\ge0\)=> \(B\ge0\)=>\(A\ge B\ge0\)

Vậy đó là điều phải chứng minh

Nguyễn Thúy Nga
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
Minh Triều
14 tháng 7 2015 lúc 22:17

trừ mỗi tỉ lệ cho 1 ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{2a+b+c+d}{a}-\frac{a}{a}=\frac{a+2b+c+d}{b}-\frac{b}{b}=\frac{a+b+2c+d}{c}-\frac{c}{c}=\frac{a+b+c+2d}{d}-\frac{d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+Nếu a+b+c+d\(\ne\)0 thì a=b=c=d lúc đó 

M=1+1+1+1=4

+Nếu a+b+c+d=0 thì a+b=-(c+d);b+c=-(d+a);c+d=-(a+b);d+a=-(b+c) lúc đó:

M=(-1)+(-1)+(-1)+(-1)=-4

✓ ℍɠŞ_ŦƦùM $₦G ✓
14 tháng 7 2015 lúc 22:28

\(\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{a+b+2c+d+a+b+c+2d}{c+d}=\frac{2a+2b+3c+3d}{c+d}\)

\(=\frac{2\left(a+b\right)}{c+d}+\frac{3\left(c+d\right)}{c+d}=2.\frac{a+b}{c+d}+3\)

\(\frac{2a+b+c+d}{a}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+b+c+2d}{a+d}=\frac{3a+3d+2c+2b}{a+d}\)

\(=\frac{3\left(a+d\right)}{a+d}+\frac{2\left(b+c\right)}{a+d}=3+2.\frac{b+c}{a+d}\)

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{2a+b+c+d+a+2b+c+d}{a+b}=\frac{3a+3b+2c+2d}{a+b}\)

\(=\frac{3\left(a+b\right)}{a+b}+\frac{2\left(c+d\right)}{a+b}=3+\frac{c+d}{a+b}.2\)

\(\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+2b+c+d+a+b+2c+d}{b+c}=\frac{3b+3c+2a+2d}{b+c}\)

\(=\frac{3\left(b+c\right)}{b+c}+\frac{2\left(a+d\right)}{b+c}=3+\frac{a+d}{b+c}.2\)

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

\(\Rightarrow\frac{2a+b+c+d}{a}+\frac{a+2b+c+d}{b}+\frac{a+b+2c+d}{c}+\frac{a+b+c+2d}{d}=5.4=20\)

\(\Rightarrow3+\frac{a+b}{c+d}.2+3+\frac{b+c}{a+d}.2+3+\frac{c+d}{a+b}.2+3+\frac{d+a}{b+c}.2=20\)

\(\Rightarrow2.\left(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\right)=20-3-3-3-3\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}=8:2=4\)

vậy \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=4\)

 

saadaa
Xem chi tiết
Phước Nguyễn
12 tháng 8 2016 lúc 21:54

Xét riêng lần lượt với các biểu thức   \(R=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)  và  

\(Q=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d},\)  ta có:

\(\text{*) }\) Ta biến đổi biểu thức  \(R\)  bằng cách cộng mỗi biểu thức trong nó với  \(1,\)  cùng lúc đó, ta tạo được một nhân tử mới cho  \(R\)  để phục vụ việc chứng minh. Khi đó,  \(R\)  sẽ mang dạng mới sau:

\(R=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

nên   \(R=\frac{1}{3}.\left[3\left(a+b+c+d\right)\right]\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

Đặt  \(x=b+c+d;\)  \(y=a+c+d;\)  \(z=a+b+d;\)  và  \(t=a+b+c\)

Không quên đặt điều kiện cho các ẩn số vừa đặt, ta có:

\(\hept{\begin{cases}x,y,z,t>0\\x+y+z+t=3\left(a+b+c+d\right)\end{cases}}\)

Ta biểu diễn lại các biểu thức  \(R\)  theo các biến vừa mới nêu sau đây:

\(R=\frac{1}{3}\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)-4\)

Mặt khác,  theo một kết quả quen thuộc được đúc kết từ bất đẳng thức  \(Cauchy-Schwarz\)  ta được:

\(\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\ge16\)

Và bằng phép chứng minh theo bất đẳng thức  \(AM-GM\)  cho  \(4\) số dương, ta dễ dàng đi đến kết luận rằng bất đẳng thức ở trên là một bất đẳng thức luôn đúng với mọi  \(x,y,z,t>0\)  

Khi đó,  \(R\ge\frac{16}{3}-4=\frac{4}{3}\)

\(\text{*) }\)  Tương tự lập luận cho biểu thức  \(Q,\)  ta cũng có đánh giá khá thú vị cho nó, điển hình:

\(Q\ge12\)

Mà  \(S=R+Q\ge\frac{4}{3}+12=5\frac{1}{3}\)

Cuối cùng, với  \(a=b=c=d>0\)  (thỏa mãn điều kiện) thì  \(S=5\frac{1}{3}\)  nên suy ra  \(5\frac{1}{3}\)  là giá trị nhỏ nhất của biểu thức  \(S\)

saadaa
13 tháng 8 2016 lúc 21:09

\(\frac{4}{3}+12=\frac{40}{3}\) chu