Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 8:36

a: \(y=-x^3-3x^2+\left(5-m\right)x\)

=>\(y'=-3x^2-3\cdot2x+5-m\)

=>\(y'=-3x^2-6x+5-m\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(36+12\left(5-m\right)< =0\)

=>\(36+60-12m< =0\)

=>\(-12m+96< =0\)

=>-12m<=-96

=>m>=8

b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)

=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)

=>\(y'=3x^2+\left(4m-4\right)x+m\)

Để hàm số đồng biến trên R thì y'>=0 với mọi x

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)

=>\(16m^2-32m+16-12m< =0\)

=>\(16m^2-44m+16< =0\)

=>\(4m^2-11m+4< =0\)

=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)

Thành Trung
Xem chi tiết
Aeri
19 tháng 8 2021 lúc 8:26

Bạn tham khảo, nguồn mạng :

undefined

   Ps : không thấy ảnh ib, nhớ k ạ

                                                                                                                                                    # Aeri # 

Khách vãng lai đã xóa
ngo mai trang
Xem chi tiết
nguyen thi khanh hoa
15 tháng 10 2015 lúc 22:51

ta tính \(y'=-3mx^2-6x+2-m\)

để hàm số nghịch biến trên R thì \(\)y'<0 với mọi x thuộc R  ta có 

y'<0 với mọi x thuộc R thì \(\begin{cases}-m

Lê vsbzhsjskskskssm
Xem chi tiết
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:19

a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)

=>\(y'=-x^2-2m\cdot x+4\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)

=>\(4m^2+16< =0\)

mà \(4m^2+16>=16>0\forall m\)

nên \(m\in\varnothing\)

b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)

=>\(y'=-x^2-m\cdot x+1\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)

=>\(m^2+4< =0\)

mà \(m^2+4>=4>0\forall m\)

nên \(m\in\varnothing\)

Nguyễn Thị Phương Thảo
Xem chi tiết
Đinh Thị Minh Thư
29 tháng 9 2016 lúc 10:43

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 19:34

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3

Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2021 lúc 7:09

\(y'=-x^2+2\left(m-3\right)x+m+4\)

a.

Hàm nghịch biến trên khoảng đã cho khi và chỉ khi: với mọi \(x\in\left(-1;3\right)\) ta có:

\(f\left(x\right)=-x^2+2\left(m-3\right)x+m+4\le0\)

\(\Delta'=\left(m-3\right)^2+m+4=m^2-5m+13>0\) ; \(\forall m\)

Bài toán thỏa mãn khi:

\(\left[{}\begin{matrix}3\le x_1< x_2\\x_1< x_2\le-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}f\left(3\right)\le0\\\dfrac{x_1+x_2}{2}>3\end{matrix}\right.\\\left\{{}\begin{matrix}f\left(-1\right)\le0\\\dfrac{x_1+x_2}{2}< -1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}7m-23\le0\\m-3>3\end{matrix}\right.\\\left\{{}\begin{matrix}-m+9\le0\\m-3< -1\end{matrix}\right.\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

Nguyễn Việt Lâm
22 tháng 6 2021 lúc 7:13

b.

Hàm nghịch biến trên khoảng đã cho khi và chỉ khi:

\(\forall x\in\left(2;4\right)\) ta có:

\(-x^2+2\left(m-3\right)x+m+4\le0\)

\(\Leftrightarrow x^2+6x-4\ge m\left(2x+1\right)\)

\(\Leftrightarrow m\le\dfrac{x^2+6x-4}{2x+1}\)

\(\Leftrightarrow m\le\min\limits_{\left[2;4\right]}\dfrac{x^2+6x-4}{2x+1}\)

Xét hàm \(f\left(x\right)=\dfrac{x^2+6x-4}{2x+1}\) trên \(\left[2;4\right]\)

\(f'\left(x\right)=\dfrac{x^2+x+7}{2\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow m\le f\left(2\right)=\dfrac{12}{5}\)

Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 6 2021 lúc 21:18

\(y'=3x^2-6x+m\)

Hàm nghịch biến trên khoảng đã cho khi và chỉ khi \(y'\le0\) ; \(\forall x\in\left(-1;0\right)\)

\(\Leftrightarrow m\le-3x^2+6x\) ; \(\forall x\in\left(-1;0\right)\)

\(\Leftrightarrow m\le\min\limits_{\left(-1;0\right)}\left(-3x^2+6x\right)\)

Xét hàm \(f\left(x\right)=-3x^2+6x\) trên \(\left(-1;0\right)\)

\(-\dfrac{b}{2a}=1\notin\left(-1;0\right)\) ; \(f\left(-1\right)=-9\) ; \(f\left(0\right)=0\)

\(\Rightarrow m\le-9\)

tthơ
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2022 lúc 14:57

Đây là hàm bậc 3 có \(a=\dfrac{1}{3}>0\) nên không bao giờ nghịch biến trên R

\(\Rightarrow\) Không tồn tại m thỏa mãn