tìm giá trị lớn nhất của A=\(\frac{3}{\left(x+2\right)^2+4}\)
làm
5. Tìm giá trị nhỏ nhất của B= (x+1)2 + (y+3)2+1
Ai nhanh mk tick cho
ghi rõ cách làm nha
cho biểu thức \(A=33×3+720:\left(x-6\right)\)
Tìm giá trị của x khi \(A=139\)
Tìm giá trị số tự nhiên của x để biểu thức A có giá trị lớn nhất, giá trị lớn nhất là bao nhiêu?
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
1. Tìm giá trị nhỏ nhất của biểu thức P=(x+3)2 + (y-1/3)4 - 4
2. Tìm giá trị lớn nhất của biểu thức Q= \(\frac{7}{\left(3x-2\right)+2016}\)
a) tìm x biết:\(2014.\left|x-12\right|+\left(x-12\right)^2=2013.\left|12-x\right|\)
b) tìm giá trị lớn nhất của biểu thức :\(A=\frac{3}{\left(x+2\right)^2+4}\)
Tìm giá trị lớn nhất của biểu thức \(B=9-\left|x-\frac{1}{2}\right|\)
\(B=9-\left|x-\frac{1}{2}\right|\)
Vì : \(-\left|x-\frac{1}{2}\right|\le9\)
=> \(9-\left|x-\frac{1}{2}\right|\le9\)
Vậy GTLN của B là 9 khi \(x=\frac{1}{2}\)
Ta có : \(\left|x-\frac{1}{2}\right|\ge0\Rightarrow-\left|x-\frac{1}{2}\right|\le0\Rightarrow9-\left|x-\frac{1}{2}\right|\le9\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Max B = 9 <=> x = 1/2
Ta có
\(\left|x-\frac{1}{2}\right|\ge0\) với mọi x
\(-\left|x-\frac{1}{2}\right|\le0\)
\(9-\left|x-\frac{1}{2}\right|\le9\)
Dấu " = " xảy ra khi \(x=\frac{1}{2}\)
Vậy MAX A = 9 khi x=1/2
Tìm giá trị lớn nhất:
C= \(\frac{-10}{\left(4-x\right)^2-2}\)
Có : \(\left(4-x\right)^2\ge0\)
\(\Rightarrow\left(4-x\right)^2-2\ge-2\)
\(\Rightarrow\frac{10}{\left(4-x\right)^2-2}\ge\frac{10}{-2}\)
\(\Rightarrow\frac{-10}{\left(4-x\right)^2-2}\le\frac{-10}{-2}\)
\(\Rightarrow\frac{-10}{\left(4-x\right)^2-2}=5\)
\(\Leftrightarrow C\le5\)
Dấu " = " xảy ra khi và chỉ khi \(\left(4-x\right)^2=0\)
\(\Leftrightarrow x=4\)
Vậy \(Max_C=5\Leftrightarrow x=4\).
Tìm giá trị lớn nhất:
A=\(\frac{5}{3\left[\left(x-2\right)^{10}+2\right]}\)
Giải ra lun nha
Có: \(3\left[\left(x-2\right)^{10}+2\right]=3\left(x-2\right)^{10}+6\ge6\) với mọi x
\(=>A\le\frac{5}{6}\) với mọi x
Dấu "=" xảy ra <=> x-2=0<=>x=2
Vậy maxA=5/6 khi x=2
Tìm giá trị nguyên của x để biểu thức A=\(\frac{2}{6-x}\)có giá trị lớn nhất.
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)