Cho \(\overline{ab}.\overline{cb}=\overline{ddd}\)và a<c. Hỏi \(\overline{abcd}\)bằng bao nhiêu?
Cho phép tính và a<c khi đó ?
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
Cho phép tính và . Khi đó .
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
Cho phép tính và . Khi đó
ab.cb = ddd = d.111 =(3d).37
b =7; a7.c7 = (3d).37 = 27.37 khi d = 9
a<c
=>a =2 ; c =3
vậy abcd =2739
cho phép chia \(\overline{ab.cb}\)=\(\overline{d}\overline{ddd}\)và a<c.Khi đó \(\overline{abcd}\)=
giúp nha
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
Câu 18 : Cho hình bình hành ABDC. Đẳng thức nào sau đây đúng ? A. overline BA - overline BC + overline DC = overline CB B. overline BA - overline BC + overline DC = overline BC C. overline BA - overline BC + overline DC = overline AD D. overline BA - overline BC + overline DC = overline CA
ABDC là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{CD};\overrightarrow{AC}=\overrightarrow{BD}\)
A: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\ne\overrightarrow{CB}\)
=>Loại
B: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}\)
\(=\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{DC}\)
\(=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\)<>vecto BC
C: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{AD}\)
=>Loại
D: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{CA}\)
=>Loại
Do đó: Không có đáp án nào đúng
Bài 1: Tìm 2 số tự nhiên mà tổng và tích của chúng đều là số nguyên tố.
Bài 2: Thay các chữ bởi các chữ số thích hợp:
\(\overline{ab}.\overline{cd}=\overline{ddd}\)
Bài 1: Gọi hai số cần tìm là a và b.
Do tích ab là số nguyên tố nên một trong hai số là số 1. Số còn lại là một số nguyên tố. Coi b = 1 và a là số nguyên tố.
Khi đó tổng của hai số là a + 1.
Để a và a + 1 đều là số nguyên tố thì a = 1. Vậy hai số cần tìm là 1 và 2.
Bài 2: Ta có:
\(\overline{ab}.\overline{cd}=\overline{ddd}\Leftrightarrow\overline{ab}.\overline{cd}=d.111=d.3.37\)
Do 37 là số nguyên tố nên hoặc ab hoặc cd phải chia hết cho 37. Ta giả sử đó là ab
Do ab là số có hai chữ số nên ab = 37 hoặc 74
TH1: \(\overline{ab}=37\Rightarrow37.\overline{cd}=d.3.37\Rightarrow\overline{cd}=3d\)
\(\Rightarrow10c=2d\Rightarrow5c=d\Rightarrow c=1;d=5\)
Ta có 37.15 = 555
TH2: \(\overline{ab}=74\Rightarrow74.\overline{cd}=d.3.37\Rightarrow2.\overline{cd}=3d\)
\(\Rightarrow20c=d\) (Loại)
Vậy ta có phép tính: 37.15 = 555
Cho hình vuông ABCD cạnh a . Tính P=\((\overline{AB} +\overline{AC})(\overline{BC}+\overline{BD}+\overline{AB})\)
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
Bài 1: Cho tam giác ABC vuông tại A, BC=10cm, AC=6cm. Tính /\(\overline{CA}-\overline{CB}\)/.
Bài 2: Cho tam giác ABC:
a) Xác định điểm M thỏa mãn: \(\overline{MA}-\overline{MB}+\overline{MC}=0\)
b) G là trọng tâm của tam giác ABC. Chứng minh rằng:\(\overline{GA}+2\overline{GB}+3\overline{GC}=\overline{AC}\)
Bài 3: Gọi I,J lần lượt là trung điểm của các đoạn thẳng AB và CD. Chứng minh rằng:\(\overline{AD}+\overline{BC}=\overline{BD}+\overline{AC}=2\overline{IJ}\)
1.Theo đl py-ta-go ,AB=8cm.Ta có|\(\overrightarrow{CA}-\overrightarrow{CB}\)| =|\(\overrightarrow{BA}\)|
=>|\(\overrightarrow{CA}-\overrightarrow{CB}\)|=8cm
3.\(\overrightarrow{IJ}\)=\(\overrightarrow{IA}+\overrightarrow{AD}+\overrightarrow{DJ}\)
\(\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{BC}+\overrightarrow{CJ}\) (vì \(\overrightarrow{IA}=\overrightarrow{IB}\);\(\overrightarrow{DJ}=\overrightarrow{CJ}\))
=>2\(\overrightarrow{IJ}=\overrightarrow{AD}+\overrightarrow{BC}\)
Tương tự =>đề bài
Bài 1:
/CA-CB/=/BA/
sau đó bn dùng pitago là đc
Bài 2
a)MA-MB+MC=0
BA+MC=0
suy ra M là đỉnh còn lại của hình bình hành ABCM
b)xét vế trái ta có:
GA+2GB+3GC
=GB+2GC
=GA+AB+2GA+2AC
=3GA+AB+2AC
=AC
bài 3:
ta có: AD+BC=AB+BD+BA+AC=BD+AC
ta có: BD+AC=BA+AD+AD+DC=2IA+2AD+2DJ=2ID+2DJ=2IJ
bạn thêm ký hiệu vectơ vào hộ mình