Tìm x
x. ( x + 7 ) = 0
Tìm chữ số x, biết
a) (80x-801) x 12 =0 b) (x1-10) x 32 = 32
c) x x x = 16 d) (xx + xx) x 0 = 0
a. (80x - 801) . 12 = 0
<=> 80x - 801 = 0
<=> 80x = 801
<=> x = \(\dfrac{801}{80}\)
(Mấy câu tiếp mik ko hiểu đề, bn viết lại để dễ hiểu hơn nhé)
c: Ta có: \(\overline{xxx}=16\)
\(\Leftrightarrow100x+10x+1=16\)
\(\Leftrightarrow101x=16\)
hay \(x=\dfrac{16}{101}\)
tìm chữ số x biết
a, (x80x-801).12=0
b,(x1-10)x x32=32
c,x.x=16
d,xx+xx.0=0
a. (x80x - 801).12 = 0
⇔ x80 x (- 801) = 0
⇔ -64080x = 801
⇔ x = 0
(mấy câu tiếp mik ko hiểu lắm bn viết lại rõ đề rồi mik giải tiếp)
Tìm xx:
xx x 7 = 357
tìm các chữ số x y sao cho :xxyy=xx x xx+yyxyy (x và y khác 0)
* Cho biểu thức:
B=(1x−√x+√xx−1):x√x−1x√x−√x(1x−x+xx−1):xx−1xx−x ( với x>0, x≠1)
a. Rút gọn B
b. Tìm x để B =12
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
G = (x+1x−1+xx+1+x1−x2):(x+1x−1+1−xx+1)(x+1x−1+xx+1+x1−x2):(x+1x−1+1−xx+1)
a) Rút gọn G b) Tìm giá trị nhỏ nhất của G với x > 0
c) Tính G tại | x - 3 | = 2 d) Tìm x với G = 1 ; G < 0
tìm chữ số x biết
a, (x80x-801).12=0
b,(x1-10)x x32=32
c,x.x=16
d,xx +xx .0=0
nhanh lên nhé còn mấy phút nữa thôi
tìm x
x^2 (x - 5) + x - 5 = 0
\(x^2\left(x-5\right)+x-5=0\)
\(\Rightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
\(x^2\left(x-5\right)+x-5=0\)
\(\Leftrightarrow x-5=0\)
hay x=5
tìm x
x(x-1)-4x+4=0
x(x-1)-4(x-1)=0
(x-4)(x-1)=0
=> x-4=0 hoặc x-1=0
=> x=4 hoặc x= 1
Vậy x = { 4;1}
\(x\left(x-1\right)-4\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
tìm x
x^3 - x^2 - 4 = 0
Lời giải:
PT $\Leftrightarrow (x^3-2x^2)+(x^2-4)=0$
$\Leftrightarrow x^2(x-2)+(x-2)(x+2)=0$
$\Leftrightarrow (x-2)(x^2+x+2)=0$
$\Rightarrow x-2=0$ hoặc $x^2+x+2=0$
Nếu $x-2=0\Leftrightarrow x=2$ (tm)
Nếu $x^2+x+2=0$
$\Leftrightarrow (x+\frac{1}{2})^2=-\frac{7}{4}<0$ (vô lý)
Vậy pt có nghiệm duy nhất $x=2$