(x-2)(x+3)(x+2)
giải các phương trình sau
1/ ( x-2)(x-5)=(x-3)(x-4)
2/ (x-7)(x+7) +x^2 -2=2(x^2+5)
3/ (x-1)^2 +(x+3)^2 =2(x-2)(x=2)
4/ (x+1)^2= (x+3)(x-2)
5/ x^2-(2x-1)(x+3)= 3-x(5+x)
6/ 3(5-2x) -4( x+2) =5x-18
1.
$(x-2)(x-5)=(x-3)(x-4)$
$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)
Vậy pt vô nghiệm.
2.
$(x-7)(x+7)+x^2-2=2(x^2+5)$
$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$
$\Leftrightarrow -51=10$ (vô lý)
Vậy pt vô nghiệm.
3.
$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$
$\Leftrightarrow 4x+10=-8$
$\Leftrightarrow 4x=-18$
$\Leftrightarrow x=-4,5$
4.
$(x+1)^2=(x+3)(x-2)$
$\Leftrightarrow x^2+2x+1=x^2+x-6$
$\Leftrightarrow x=-7$
5.
$x^2-(2x-1)(x+3)=3-x(5+x)$
$\Leftrightarrow x^2-(2x^2+5x-3)=3-(5x+x^2)$
$\Leftrightarro -x^2-5x+3=3-5x-x^2$ (luôn đúng)
Vậy pt có nghiệm $x\in\mathbb{R}$
6.
$3(5-2x)-4(x+2)=5x-18$
$\Leftrightarrow 15-6x-4x-8=5x-18$
$\Leftrightarrow 7-10x=5x-18$
$\Leftrightarrow 25=15x$
$\Leftrightarrow x=\frac{5}{3}$
giải phương trình:
a) 2/x+1 - 1/x-3= 3x-11/x^2-2x-3
b) 3/x-2 +1/x=-2/x.(x-2)
c) x-3/x+3 - 2/x-3=3x+1/9-x^2
d) 2/x+1 - 1/x-2=3x-5/x^2-x-2
e) x-2/x+2 + 3/x-2=x^2-11/x^2-4
f) x+3/x+1 + x-2/x=2
g) x+5/x-5 - x-5/x+5=20/x^2-25
h) x+4/x+1 + x/x-1=2x^2/x^2-1
i) x+1/x-1 - 1/x+1=x^2+2/x^2-1
Tìm x biết : 6(x+2)(x-3)-3(x-2)^2-3(x-1)(x+1)=1
3(x+2)^2+(2x-1)^2-7(x+3)(x-3)=36
(x-1)(x^2+x+1)+x(x+2)(2-x)=5
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
Tìm x biết : 6(x+2)(x-3)-3(x-2)^2-3(x-1)(x+1)=1
3(x+2)^2+(2x-1)^2-7(x+3)(x-3)=36
(x-1)(x^2+x+1)+x(x+2)(2-x)=5
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
a, (3x+2)2 - (3x-2)2 =5x+38 b, 3(x-2)2 +9(x-1) =3(x2+x-3)
c, (x+3)3 -(x-3)2 -(x-3)2 =6x+18 d, (x-1)3-x(x+1)2=5x(2-x)-11(x+2)
e, (x+1)(x2-x+1)-2x=x(x-1)(x+1) f, (x-2)3+(3x-1)(3x+1)=(x+1)3
a: =>9x^2+12x+4-9x^2+12x-4=5x+38
=>24x=5x+38
=>19x=38
=>x=2
e: =>x^3+1-2x=x^3-x
=>-2x+1=-x
=>-x=-1
=>x=1
f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1
=>12x-9=3x+1
=>9x=10
=>x=10/9
b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)
=>-3x+3=3x-9
=>-6x=-12
=>x=2
Tính bằng hai cách (theo mẫu).
Mẫu: 4 x 3 x 2 = ..?.. Cách 1: 4 x 3 x 2 = (4 x 3) x 2 = 12 = 12 x 2 = 24 Cách 2: 4 x 3 x 2 = 4 = 4 x (3 x 2) = 4 x 6 = 24 |
4 x 2 x 5 7 x 2 x 3 6 x 3 x 3 6 x 2 x 4
4 x 2 x 5 = ?
Cách 1: 4 x 2 x 5 = (4 x 2) x 5 = 8 x 5 = 40
Cách 2: 4 x 2 x 5 = 4 x (2 x 5) = 4 x 10 = 40
7 x 2 x 3 = ?
Cách 1: 7 x 2 x 3 = (7 x 2) x 3 = 14 x 3 = 42
Cách 2: 7 x 2 x 3 = 7 x (2 x 3) = 7 x 6 = 42
6 x 3 x 3 = ?
Cách 1: 6 x 3 x 3 = (6 x 3) x 3 = 18 x 3 = 54
Cách 2: 6 x 3 x 3 = 6 x (3 x 3) = 6 x 9 = 54
6 x 2 x 4 = ?
Cách 1: 6 x 2 x 4 = (6 x 2) x 4 = 12 x 4 = 48
Cách 2: 6 x 2 x 4 = 6 x (2 x 4) = 6 x 8 = 48
1:
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)
\(\Leftrightarrow x^2+5x=0\)
=>x=0 hoặc x=-5
3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
a) (x+2)\(^2\)+2(x-4)=(x-4)(x-2)
b) (x+1)(2x-3)-3(x-2)=2(x-1)
c) (x+3)\(^2\)-(x-3)\(^2\)=6x+18
d) (x-1)\(^3\)-x(x+1)\(^2\)=5x(2-x)-11(x+2)
a) Ta có: \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)
\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)
\(\Leftrightarrow12x-12=0\)
\(\Leftrightarrow12x=12\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)\)
\(\Leftrightarrow2x^2-3x+2x-3-3x+6=2x-2\)
\(\Leftrightarrow2x^2-4x+3-2x+2=0\)
\(\Leftrightarrow2x^2-6x+5=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{5}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}=0\)(Vô lý)
Vậy: \(S=\varnothing\)
c) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2=6x+18\)
\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)-6x-18=0\)
\(\Leftrightarrow x^2-9-x^2+6x-9=0\)
\(\Leftrightarrow6x-18=0\)
\(\Leftrightarrow6x=18\)
hay x=3
Vậy: S={3}
d) Ta có: \(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=5x-5x^2-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-5x^2-6x-22\)
\(\Leftrightarrow-5x^2+2x-1+5x^2+6x+22=0\)
\(\Leftrightarrow8x+21=0\)
\(\Leftrightarrow8x=-21\)
hay \(x=-\dfrac{21}{8}\)
Vậy: \(S=\left\{-\dfrac{21}{8}\right\}\)
Phân tích đa thức thành nhân tử:
1.45+x^3-5*x^2-9*x
2.x^4-2*x^3-2*x^2-2*x+3
3.x^4-5*x^2+4
4.x^4+64
5.x^5+x^4+1
6.(x^2+2*x)*(x^2+2*x+4)+3
7.(x^3+4*x+8)^2+3*x*(x^2+4*x+8)+2*x^2
8. x^3*(x^2-7)^2-36*x
9.x^5+x+1
10. x^8+x^4+1
11. x^5-x^4-x^3-x^2-x-2
12. x^9-x^7-x^6-x^5+x^4+x^3+x^2-1
13. (x^2-x)^2-12*(x^2-x)+24
1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)
\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)
3, \(x^4-5x^2+4\)
Đặt \(x^2=t\left(t\ge0\right)\)ta có :
\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)
\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`Answer:`
1. `45+x^3-5x^2-9x`
`=x^3+3x^2-8x^2-24x+15x+45x`
`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`
`=(x+3).(x^2-8x+15)`
`=(x+3).(x^2-5x-3x+15)`
`=(x-3).(x-5).(x-3)`
2. `x^4-2x^3-2x^2-2x-3`
`=x^4+x^3-3x^3+x^2+x-3x-3`
`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`
`=(x+1).(x^3-3x^2+x-3)`
`=(x+1).[x^3 .(x-3).(x-3)]`
`=(x+1).(x-3).(x^2+1)`
3. `x^4-5x^2+4`
`=x^4-x^2-4x^2+4`
`=x^2 .(x^2-1)-4.(x^2-1)`
`=(x^2-1).(x^2-4)`
`=(x-1).(x+1).(x-2).(x+2)`
4. `x^4+64`
`=x^4+16x^2+64-16x^2`
`=(x^2+8)^2-16x^2`
`=(x^2+8-4x).(x^2+8+4x)`
5. `x^5+x^4+1`
`=x^5+x^4+x^3-x^3+1`
`=x^3 .(x^2+x+1)-(x^3-1)`
`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`
`=(x^2+x+1).(x^3-x+1)`
6. `(x^2+2x).(x^2+2x+4)+3`
`=(x^2+2x)^2+4.(x^2+2x)+3`
`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`
`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`
`=(x^2+2x+1).(x^2+2x+3)`
`=(x+1)^2 .(x^2+2x+3)`
7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`
`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`
`=x^6+8x^4+19x^3+30x^2+88x+64`
8. `x^3 .(x^2-7)^2-36x`
`=x[x^2.(x^2-7)^2-36]`
`=x[(x^3-7x)^2-6^2]`
`=x.(x^3-7x-6).(x^3-7x+6)`
`=x.(x^3-6x-x-6).(x^3-x-6x+6)`
`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`
`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`
`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`
`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`
`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`
9. `x^5+x+1`
`=x^5-x^2+x^2+x+1`
`=x^2 .(x^3-1)+(x^2+x+1)`
`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1).(x^3-x^2+1)`
10. `x^8+x^4+1`
`=[(x^4)^2+2x^4+1]-x^4`
`=(x^4+1)^2-(x^2)^2`
`=(x^4-x^2+1).(x^4+x^2+1)`
`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`
`=[(x^2+1)^2-x^2].(x^4-x^2+1)`
`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)
11. ` x^5-x^4-x^3-x^2-x-2`
`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`
`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`
`=(x-2).(x^4+x^3+x^2+x+1)`
12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`
`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`
`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`
`=(x^2-1).(x^7-x^4-x^3+1)`
`=(x-1)(x+1)(x^3-1)(x^4-1)`
`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`
`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`
`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`
13. `(x^2-x)^2-12(x^2-x)+24`
`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`
`=(x^2-x+6)^2-12`
`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`