tìm giá trị nhỏ nhất của biểu thức
a) \(x^2+14x+y^2-2y+7\)
b) \(x^2-4xy+2y^2-22y+173\)
Tìm giá trị nhỏ nhất:
a) x2+14x+y2-2y+7
b) x2+4xy+2y2-22y+173
x^2 + 14x + y^2 - 2y + 7
( x^2 + 14 x+ 49 ) + ( y - 2y + 1) -43
( x-7)^2 + ( y-1)^2 - 43
Vậy Min của biểu thức là : -43 khi \(\hept{\begin{cases}\left(x-7\right)^2\\\left(y-1\right)^2=0\end{cases}}=0\) \(\Leftrightarrow\hept{\begin{cases}x-7=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)
phần b sao tương tự được
xem lại b có sai đề ko nhé
Tìm giá trị nhỏ nhất
D=x2-3.x+5
E=x2 +14x+y2-2y+7
G=x2+4xy+2y2-22y+173
a) D=x2-3x+5=x2-3x+2,25+2,75=(x-1,5)2+2,75
Vì (x-1,5)2luôn lớn hơn hoặc bằng 0 nên để D nhỏ nhất thì (x-1,5)2cũng phải nhỏ nhất hay (x-1,5)2=0 =>x=1,5
b)-43
bài dạng này chỉ có các bn thi violympic làm dc thui
tui làm phần E nếu h sẽ lam hêt k thi bye
E = (x+7)2 + ( y-1)2 -49 -1 +7
GTNN: E = -43
Tìm Giá trị nhỏ nhất của biểu thức
a)\(x^2+10x+27\)
b)\(x^2+x+7\)
c)\(x^2-12x+37\)
d)\(x^2-12x+37\)
e)\(x^2+14x+y^2-2y+7\)
f)\(x^2+4xy-2y^2-22y+173\)
a, x2 + 10x + 27
Đặt A = x2 + 2. x. 5 + 52 + 2
= ( x + 5 )2 + 2
Vì ( x + 5 )2 \(\ge\)0 với mọi x
=> ( x + 5 )2 + 2 \(\ge\)2 với mọi x
Hay A \(\ge\)2
Dấu " = " xảy ra khi:
( x + 5 )2 = 0
x + 5 = 0
x = - 5
Vậy Min A = 2 khi x = - 5
b, x2 + x + 7
Đặt B = x2 + x + 7
\(=x^2+x+\frac{1}{4}+\frac{27}{4}\)
\(=\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{27}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)với mọi x
Hay B \(\ge\frac{27}{4}\)
Dấu " = " xảy ra khi:
\(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Vậy Min B = \(\frac{27}{4}\)khi x = \(-\frac{1}{2}\)
a) x2 + 10 x + 27 =( x2 + 2. 5 . x + 52 ) + 2 = ( x + 5 ) 2 + 2
Vì ( x + 5 ) 2 \(\ge\) 0 với mọi x nên ( x + 5 ) 2 + 2 \(\ge\) 2 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x + 5 = 0 \(\Leftrightarrow\) x = -5
b) x2 + x + 7 = 0 \(\Leftrightarrow\) x2 + 2. x . \(\frac{1}{2}\)+ \(\left(\frac{1}{2}\right)^2\) + \(\frac{27}{4}\) = 0 \(\Leftrightarrow\)( x + 1/2) 2 + 27/4 = 0
Vì ( x + 1/2 )2 \(\ge\) 0 với mọi x nên ( x + 1/2) 2 + 27/4 \(\ge\)27/4 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x+ 1/2 = 0 \(\Leftrightarrow\) x = ---\(\frac{1}{2}\)
c + d ) Tương tự a, b
e) x2 + 14 x + y2 - 2y +7 = 0 \(\Leftrightarrow\) ( x2 + 2. x. 7 + 72 ) + ( y2 -- 2y + 1 ) -43 = 0 \(\Leftrightarrow\) ( x + 7 ) 2 + ( y -- 1 ) 2 --43 = 0 ( 1 )
Vì ( x + 7 )2 \(\ge\) 0 và ( y -- 1 )2 \(\ge\) 0 với mọi x, y nên ( 1 ) \(\ge\) --43 với mọi x, y
Dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+7=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=-7\\y=1\end{cases}}\)
c, x2 - 12x + 37
Đặt C = x2 - 12x + 37
= x2 - 2. x. 6 + 62 + 1
= ( x - 6 )2 + 1
Vì ( x - 6 )2 \(\ge\)0 với mọi x
=> ( x - 6 )2 + 1 \(\ge\)1
Hay C \(\ge\)1
Dấu " = " xảy ra khi:
( x - 6 )2 = 0
x - 6 = 0
x = 6
Vậy Min C = 1 khi x = 6
d, Tương tự như phần c :v
e, x2 + 14x + y2 - 2y + 7
Đặt E = x2 + 14x + y2 - 2y + 7
= x2 + 14x + y2 - 2y + 49 + 1 - 43
= ( x2 + 14x + 49 ) + ( y2 - 2y + 1 ) - 43
= ( x2 + 2. x. 7 + 72 ) + ( y2 - 2. y. 1 + 12 ) - 43
= ( x + 7 )2 + ( y - 1 )2 - 43
Với mọi giá trị của x và y. Ta có:
( x + 7 )2 \(\ge\)0
( y - 1 )2 \(\ge\)0
=> ( x + 7 )2 + ( y - 1 )2 \(\ge\)0
=> ( x + 7 )2 + ( y - 1 )2 - 43 \(\ge\)- 43
Hay E \(\ge\)- 43
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}\left(x+7\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+7=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-7\\y=1\end{cases}}}\)
Vậy Min E = - 43 khi x = -7; y = 1
f, x2 + 4xy + 2y2 - 22y + 173
Hình như đề sai :))
Tìm giá trị nhỏ nhất của biểu thức
a) x2+10x+27
b)x2+x+7 c)x2-12x+37 d) x2-3x+5
e)x2+14x+y2-2y+7 g)x2+4xy+2y2-22y+173
chứng minh -x^2+4xy-5y^2-8y-18 luôn âm với mọi x
tìm giá trị nhỏ nhất của x^2+4xy+2y^2-22y+173
\(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
\(=-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Vì \(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le\forall x;y\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\forall x;y\)
\(\Rightarrow dpcm\)
a) \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)+2\right]\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]\)
Vì \(\left(x-2y\right)^2\ge0\forall x,y\); \(\left(y+4\right)^2\ge0\forall y\); \(2>0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+4\right)^2+2>0\)
\(\Rightarrow-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]< 0\)
\(\Rightarrow-x^2+4xy-5y^2-8y-18\)luôn âm với mọi x ( đpcm )
BT1. Tìm giá trị nhỏ nhất: x2+4xy+2y2-22y+173
BT2. Tìm giá trị lớn nhất: -x2-x-y2-3y+13
Đặt \(A=x^2+4xy+2y^2-22y+173\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2-22y+121\right)+52\)
\(A=\left(x+y\right)^2+\left(y-11\right)^2+52\)
\(\left(x+y\right)^2\ge0;\left(y-11\right)^2\ge0\) với mọi x;y => \(A=\left(x+y\right)^2+\left(y-11\right)^2+52\ge52\)
=>minA=52 <=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-11\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-11=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-11\\y=11\end{cases}}\)
Vậy min=52 khi x=-11 và y=11
bài này mình làm tắt
\(B=-x^2-x-y^2-3y+13\)
\(B=\frac{31}{2}-\left(x^2+x+\frac{1}{4}\right)-\left(y^2+3y+\frac{9}{4}\right)\)
\(B=\frac{31}{2}-\left(x+\frac{1}{2}\right)^2-\left(y+\frac{3}{2}\right)^2\le\frac{31}{2}\)
=>maxB=31/2 <=>x=-1/2 và y=-3/2
Tìm giá trị nhỏ nhất
a/ x2+10x+27
b/x2+x+7
c/x2-12x+37
d/x2-3x+5
f/x2+14x+y2-2y+7
g/x2+4xy+2y2-22y+173
a: =x^2+10x+25+2=(x+5)^2+2>=2
Dấu = xảy ra khi x=-5
b: =x^2+x+1/4+27/4
=(x+1/2)^2+27/4>=27/4
Dấu = xảy ra khi x=-1/2
c: =x^2-12x+36+1=(x-6)^2+1>=1
Dấu = xảy ra khi x=6
d: =x^2-3x+9/4+11/4=(x-3/2)^2+11/4>=11/4
Dấu = xảy ra khi x=3/2
tìm giá trị nhở nhất của biến
a,\(x^2+10x+27\)
b,\(x^2-12x+37\)
c, \(x^2+x+7\)
d,\(x^2+4xy-5y^2-8y-18\)
e,\(x^2+14x+y^2-2y+7\)
f,\(x^2+4xy+2y^2-22y+173\)
a.A= \(x^2+10x+27\)
\(=x^2+2.x.5+25+2\)
\(\left(x+5\right)^2+2\ge2\forall x\)
Dấu " = " xảy ra <=> x + 5 = 0
=> x = -5
Vậy Min A = 2 <=> x = -5
b.B = \(x^2-12x+37\)
\(=x^2-2.x.6+36+1\)
\(=\left(x-6\right)^2+1\ge1\forall x\)
Dấu " = " xảy ra <=> x - 6 = 0
=> x = 6
Vậy Min B = 1 <=> x = 6
c. \(x^2+x+7\)
\(=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{27}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\forall x\)
Dấu " =" xảy ra <=> \(x+\dfrac{1}{2}=0\)
\(x=\dfrac{-1}{2}\)
Vậy Min C = \(\dfrac{27}{4}\Leftrightarrow x=\dfrac{-1}{2}\)
\(F=x^2+4xy+2y^2-22y+173\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-22y+121\right)+52\)
\(=\left(x+y\right)^2+\left(y-11\right)^2+52\)
\(\left(x+y\right)^2\ge0;\left(y-11\right)^2\ge0\forall x,y\)
\(\Rightarrow F\ge52\forall x,y\)
Dấu " =" xảy ra <=>
\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-11\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-11=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-11\\y=11\end{matrix}\right.\)
Vậy Min F = 52 <=> x = -11; y = 11
tìm giá trị nhỏ nhất của biểu thức
a) E= 4x2+y2-4x-2y+3
b) G=x2+2y2+2xy-2y
c) H=x2+14x+y2-2y+7
d) x2+2xy+y2-22y+173
giúp mình với nha
a) \(E=4x^2+y^2-4x-2y+3=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\) với mọi \(x;y\)
\(\Rightarrow\) GTNN của E là 1 khi \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)vậy GTNN của E là 1 khi \(x=\dfrac{1}{2};y=1\)
b) \(G=x^2+2y^2+2xy-2y=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\) với mọi \(x;y\)
\(\Rightarrow\) GTNN của G là \(-1\) khi \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\) vậy GTNN của G là \(-1\) khi \(y=1;x=-1\)
c) \(H=x^2+14x+y^2-2y+7=\left(x^2+14x+49\right)+\left(y^2-2y+1\right)-43\)
\(=\left(x+7\right)^2+\left(y-1\right)^2-43\ge-43\) với mọi \(x;y\)
\(\Rightarrow\) GTNN của H là \(-43\) khi \(\left\{{}\begin{matrix}\left(x+7\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=1\end{matrix}\right.\) vậy GTNN của H là \(-43\) khi \(x=-7;y=1\)
d) câu này hình như đề sai
Tìm giá trị nhỏ nhất của các biểu thức sau:
1) A=2x2+9y2-6xy-6x-12y+2028
2) B=x2-4xy+5y2+10x-22y+28
3) C=2x2+2xy+y2-2x+2y+15
4) D=x2+26y2-10xy+14x-76y+59