Cho tam giác ABC cân ở A. Kẻ CK vuông góc với AB biết góc A - BCH = 20o. Tính góc A
Cho tam giác ABC cân tại A kẻ BH vuông góc với Ac kẻ CK vuông góc với AB a) chứng minh tam giác AHK là tam giác cân
Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{BCA}=\widehat{CBA}\) hay \(\widehat{BCH}=\widehat{CBA}\)
Xét hai tam giác vuông BHC và CKB có:
\(\left\{{}\begin{matrix}BC\text{ chung}\\\widehat{BCH}=\widehat{CBK}\end{matrix}\right.\) \(\Rightarrow\Delta_VBHC=\Delta_VCKB\left(ch-gn\right)\)
\(\Rightarrow CH=BK\) (1)
Mà \(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\)
\(\Rightarrow AK+BK=AH+CH\) (2)
(1);(2) \(\Rightarrow AK=AH\)
\(\Rightarrow\Delta AHK\) cân tại A
Do cân tại A hay
Xét hai tam giác vuông BHC và CKB có:
(1)
Mà cân tại A
(2)
(1);(2)
cân tại A
2, Cho tam giác ABC, kẻ BH vuông góc với AC ( A thuộc AC ); CK vuông góc với AB ( K thuộc AB ). Bt BH vuông góc với CK . Chứng minh tam giác ABC cân
1 . Cho tam giác ABC cân tại A , góc A = \(120^o\) , BC= 6cm . Đường vuông góc với AB tại A cắt BC ở D . Tính độ dài BD
2 . Cho tam giác ABC vuông cân tại A , đường trung tuyến AM . Trên BC lấy E , kẻ BH vuông góc với AE tại H , kẻ CK vuông góc với AE tại K . Chứng minh tam giác MHK vuông cân
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
Cho tam giác ABC cân ở A. Kẻ BH vuông góc với AC(H thuộc AC). Kẻ CK vuông góc với AB(K thuộc AB). chứng minh AH=AK
Ta có: ΔABC cân tại A
=> Góc B = góc C
=> AB = AC
Xét 2 ΔKBC và ΔHCB có
Góc B = góc C
BC chung
Góc BKC = góc BHC = 90o
=> ΔKBC = ΔHCB (c - g - c)
=> BK = HC
Mà AB = AC (cmt)
=> AK = AH (dpcm)
Xét tam giác vuông \(ABH\)và tam giác \(ACK\) có :
\(AB=AC\) ( tam giác ABC cân tại A )
A chung
Vậy \(\Delta ABH=\Delta ACK\)
\(\Leftrightarrow AH=AK\)
cho tam giác ABC cân tại A có ; góc B =50 độ
a, tính các góc còn lại của tam giác ABC
b, kẻ BH vuông góc với AC tại H
kẻ CK vuông góc với AB tại H . chứng minh BH=CK
c, gọi O là giao diểm của BH và CK . chứng minh tam giác OBC cân
a ) Vì \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)
Ta có : \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^o=80^o\)
b ) Xét \(\Delta KBC\) và \(\Delta HCB\) có :
\(\widehat{BKC}=\widehat{CHB}=90^o\)
BC là cạnh chung
\(\widehat{C}=\widehat{B}\left(cmt\right)\)
\(\Rightarrow\Delta KBC=\Delta HCB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow KC=BH\)
C ) Vì \(\Delta KBC=\Delta HCB\left(cmt\right)\)
\(\Rightarrow\widehat{BCK}=\widehat{CBH}\)
\(\Rightarrow\Delta OBC\) cân tại O ( đpcm)
ĐỀ ĐỄ THẾ NÀY MÀ KO LÀM ĐC...
cho tam giác ABC cân tại A có ; góc B =50 độ
a, tính các góc còn lại của tam giác ABC
b, kẻ BH vuông góc với AC tại H
kẻ CK vuông góc với AB tại H . chứng minh BH=CK
c, gọi O là giao diểm của BH và CK . chứng minh tam giác OBC cân
a)Vì: ΔABC cân tại A(gt)
=> \(\widehat{B}=\widehat{C}=50^o\)
Có: \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^0=80^o\)
b)Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90^o\)
BC: cạnh chung
\(\widehat{C}=\widehat{B}\left(cmt\right)\)
=> ΔKBC=ΔHCB(cạnh huyền-góc nhọn)
=>KC=BH
c)Vì: ΔKBC=ΔHCB(cmt)
=> \(\widehat{BCK}=\widehat{CBH}\)
=>ΔOBC cân tại O
Mk k vẽ hình nữa nha!!!
a/ Vì ΔABC cân tại A(gt) => \(\widehat{B}=\widehat{C}=50^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
hay \(\widehat{A}+50^o+50^o=180^o\Rightarrow\widehat{A}=180^o-50^o-50^o=80^o\)
b/ Xét 2 Δ vuông: ΔBKC và ΔCHB có:
BC: Cạnh chung
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
=> ΔBKC = ΔCHB (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng) (đpcm)
c/ Vì ΔBKC = ΔCHB (ý b)
=> \(\widehat{HBC}=\widehat{KCB}\) (2 góc tương ứng)
=> ΔOBC cân tại O (đpcm)
cho tam giác ABC vuông ở A (AC> AB). Kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Kẻ BE vuông góc với (E thuộc AM) và CK vuông góc với AM (K thuộc AM) .CK cắt AH ở D.
a) giả sử biết AB=2, BC=4 tính AC
b) chứng tỏ BE=CK
c) Giả sử biết thêm HB=HM, chứng tỏ tam giác ACD là tam giác cân và MI vuông góc với AB ( I là giao điểm của BE và AH)
Cho tam giác abc cân tại a, kẻ bh vuông góc với ac, kẻ ck vuông góc với ab. cm
a, Tam giác abh = tam giác ack
b, bh = ck
Cho tam giác ABC cân tại A. Từ B kẻ BH vuông góc với AC ( H thuộc AC ), từ C kẻ CK vuông góc với AB (K thuộc AB).
a) chứng minh tam giác AHB = tam giác AKC
b) Biết AB=10cm, BH=8cm. Tính độ dài AH?
c) Gọi E là giao điểm của BH và CK. AE là tia phân giác góc A
( ghi GT và KL)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
b: AH=căn 10^2-8^2=6cm
c: Xét ΔAKE vuông tại K và ΔAHE vuông tại H có
AE chung
AK=AH
=>ΔAKE=ΔAHE
=>góc KAE=góc HAE
=>AE là phân giác của góc BAC