Cho A, B, C là 3 góc của tam giác. Rút gọn M=cos(2A+B+C)
cho 3 góc A, B, C của tam giác lập thành 1 CSN có công bội q=2. Tính gtbt \(M=cos^2A+cos^2B+cos^2C\)
Không mất tính tổng quát, giả sử \(A< B< C\Rightarrow\left\{{}\begin{matrix}B=A.q=2A\\C=A.q^2=4A\end{matrix}\right.\)
\(A+B+C=180^0\Rightarrow A+2A+4A=180^0\)
\(\Rightarrow7A=180^0\Rightarrow\left\{{}\begin{matrix}A=\dfrac{180^0}{7}\\B=\dfrac{360^0}{7}\\C=\dfrac{720^0}{7}\end{matrix}\right.\)
Thế vào bấm máy biểu thức M. Nhưng tại sao người ta cho xấu vậy nhỉ?
Cho a là góc nhọn. Rút gọn biểu thức: A= sin^2a + cos^2a-3sinh^4a- 2 có ^2 a+ sin ^2a
\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)
\(=2sin^2a-cos^2a-sin^4a\)
\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)
khai triển ra rồi quy đồng lên
\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)
Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)
\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)
Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)
\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)
\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)
\(=sin^2a\left(1+sin^2a\right)-1\)
\(=sin^4a-cos^2a\)
viết lại đề đi cậu ơi
cho tam giác ABC cân tại B có BC = 2a, M là trung điểm của BC. lấy d.e theo thứ tự thuộc AB,AC sao cho góc DMEbằng góc B
a. c/m răng tích BD.CE k đổi
b. c/m rằng DM là tia phân giác của góc BDE
c. tính chu vi của tam giác ADE nếu tam giác ABC là tam giác đều
Cho A,B,C là các góc của tam giác. Chứng minh các đẳng thức sau: a. cos(A+B)+cosC=0 b. cosA+B/2=sinC/2 c. cos(A-B)+cos(2B+C)=0
a) \(cos\left(A+B\right)+cosC=0\)
\(\Leftrightarrow cos\left(\pi-C\right)+cosC=0\)
\(\Leftrightarrow-cosC+cosC=0\)
\(\Leftrightarrow0=0\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
b) \(cos\left(\dfrac{A+B}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{\pi-C}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow sin\dfrac{C}{2}=sin\dfrac{C}{2}\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
c) \(cos\left(A-B\right)+cos\left(2B+C\right)=0\left(1\right)\)
Ta có : \(A+B+C=\pi\)
\(\Leftrightarrow2B+C=\pi-A+B\)
\(\Leftrightarrow2B+C=\pi-\left(A-B\right)\)
\(\left(1\right)\Leftrightarrow cos\left(A-B\right)+cos\left[\pi-\left(A-B\right)\right]=0\)
\(\Leftrightarrow cos\left(A-B\right)-cos\left(A-B\right)=0\)
\(\Leftrightarrow0=0\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho biểu thức: A=15cân4a+cân a-cân25a a) rút gọn A b) tính giá trị của biểu thức A tại A=100 b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Câu 1:
a: \(A=15\sqrt{4a}+\sqrt{a}-\sqrt{25a}\)
\(=15\cdot2\sqrt{a}+\sqrt{a}-5\sqrt{a}\)
\(=30\sqrt{a}-4\sqrt{a}=26\sqrt{a}\)
b: Sửa đề: Khi a=100
Thay a=100 vào A, ta được:
\(A=26\cdot\sqrt{100}=26\cdot10=260\)
Cho tam giác ABC có ba góc đèu nhọn , các đường BD và CE cắt nhau tại H . Gọi M,N,K lần lượt là trung điểm của AH,ED,BC:
a) CM : M,N,K thẳng hàng
b) Tính số đo góc MDN
c) AH cắt BC tại F . Kí hiệu S là diện tích . CM : \(\frac{S\Delta AED}{S\Delta ABC}=cos^2A\), \(\frac{SBDEC}{S\Delta ABC}=sin^2A\),\(\frac{S\Delta EDF}{S\Delta ABC}=1-cos^2A-cos^2B-cos^2C\)
d)CM : \(cos^2A+cos^2B+cos^2C< 1\), \(2< sin^2A+sin^2B+sin^2C< 3\)
ai tích mình mình tích lại cho
cho tam giác ABC cân ở A, BC=2a
M là trung điểm của BC, D thuộc BC, E thuộc AC sao cho góc DME=góc ABC
a, CMR BD.CE ko đổi
b, DM là phân giác góc BDE
c,nếu tam giác ABC đều cạnh =2a tính chu vi tam giác ADE
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H.
a)CMR:
Tam giác AEF đồng dạng với tam giác ABC. \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b)CMR:\(S_{DÈF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)S_{ABC}\)
c)Cho biết AH=k.HD. CMR: \(\tan B.\tan C=k+1\)
d)CMR:\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)