tìm giá trị lớn nhất của biểu thức 15-(x-2)\(^{^2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm giá trị lớn nhất của biểu thức:
A=(2.x+1/3)^4-1
tìm giá trị nhỏ nhất của biểu thức:
B=-(4/9.x-2?15)^2+3
Bài 9 : tìm giá trị lớn nhất của biểu thức
A) -x^2-2x+3
B) -4x^2+4x-3
C) -x^2+6x-15
Bài 8 tìm giá trị nhỏ nhất của biểu thức
B)X² — 6x + 11
C. X² – x +1
D. X² – 12x + 2
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
Bài 4. Tìm giá trị nhỏ nhất của các biểu thức:
a) A = 2x2 – 15 ; b) B = 2(x + 1)2 – 17.
Bài 5. Tìm giá trị lớn nhất của các biểu thức:
a) A = 14 – x2; b) B = 25 – (x – 2)2
mik sẽ tick nha
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
Tìm giá trị lớn nhất của biểu thức: B=\(\dfrac{x^2+15}{x^2+3}\)
\(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\)
Do \(x^2+3\ge3;\forall x\)
\(\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\)
\(\Rightarrow B\le1+4=5\)
Vậy \(B_{max}=5\) khi \(x=0\)
TÌM GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC B=x^2+15/x^2+3
Ta có : \(B=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}.\)Do \(x^2\ge0\)với mọi x nên \(x^2+3\ge3\Rightarrow\frac{12}{x^2+3}\le4\Rightarrow\frac{12}{x^2+3}+1\le4+1\)hay \(B\le5.\)Vậy \(maxB=37\)đạt được khi \(x=0.\)
TÌM GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC SAU
X^2+15/ X^2 + 3
Để X^2+15/ X^2 + 3 đạt GTLN
Biểu thức đạt GTLN khi X^2 + 3 đạt giá trị dương nhỏ nhất
\(x^2\ge0\Leftrightarrow x^2+3\ge0+3=3\)
=>GTNN của mẫu là 3 khi đó x2=0 <=>x=0
=>Giá trị của tử khi x=0 là \(0^2+15=15\)
=>GTLN của biểu thức là:\(\frac{15}{3}=5\Leftrightarrow x=0\)
\(\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có
\(x^2\ge0\) với mọi x
\(\Rightarrow x^2+3\ge3>0\)
\(\Rightarrow\frac{1}{x^2+3}\ge\frac{1}{3}\)
\(\Rightarrow\frac{12}{x^2+3}\ge4\)
\(\Rightarrow1+\frac{12}{x^2+1}\ge5\)
Dấu " = " xảy ra khi x=0
Vậy biểu thức đạt giá trị nhỏ nhất là 5 khi x=0
a, CM rằng biểu thức sau luôn có giá trị (-) với mọi giá trị của biến : -9x^2+12x+15.
b) tìm giá trị bé nhất của biểu thức.
c) tìm giá trị lớn nhât của 11-10x-x^2
Tìm giá trị lớn nhất của biểu thức B=15-(x+3) mũ 2
Giá trị lớn nhất của biểu thức B = 225
Để nó lớn nhất thì phải trừ cho 0 nên (x+3) mũ 2 phải bằng 0 vậy x = -3.
Vì 15 - 0 = 15 nên giá trị lớn nhất là 15 nhé ^_^
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))