Bài 6: tìm cặp số x, y thỏa mãn đẳng thức sau:
a) 3( 2x -1)2 + 7( 3y+5)2 = 0
b) x2+y2-2x + 10y +26=0
Tìm cặp số x,y thỏa mãn đẳng thức sau:
a) 3( 2x - 1 )2 + 7( 3y + 5 )2= 0
b) x2 + y2 - 2x +10y + 26 = 0
Tìm cặp số x,y thỏa mãn đẳng thức sau:
a) 3( 2x - 1 )2 + 7( 3y + 5 )2= 0
b) x2 + y2 - 2x +10y + 26 = 0
Các bạn giúp mình với, mình cảm ơn trước nha
Ta có : 3(2x - 1)2 \(\ge0\forall x\)
7(3y + 5)2 \(\ge0\forall x\)
Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0
Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0
\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
Bài tập 4: CMR không có các số x, y, z thỏa mãn mỗi đẳng thức sau:
a) 2x2 + y2 - 2xy + x + 2 = 0
b) x2 + 9y2 + 4z2 - 2x + 12y - 4z +20 = 0
c) –x2 - 26y2 +10xy – 20y - 150 = 0
\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)
\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)
Tìm cặp số x,y thỏa mãn đẳng thức sau:
a) 3( 2x - 1 )2 + 7( 3y + 5 )2= 0
b) x2 + y2 - 2x +10y + 26 = 0
a, \(\left\{{}\begin{matrix}3\left(2x-1\right)^2\ge0\\7\left(3y+5\right)^2\ge0\end{matrix}\right.\Rightarrow3\left(2x-1\right)^2+7\left(3y+5\right)^2\ge0\)
Mà \(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy...
b, \(x^2+y^2-2x+10y+26=0\)
\(\Leftrightarrow x^2-2x+1+y^2+10+25=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
Mà \(\left(x-1\right)^2+\left(y+5\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
Vậy...
Tìm các cặp số nguyên x;y thỏa mãn:
a) 6x^2+10y^2+2xy-x-28y+18=0
b) 2x^6+y^2-2x^3y=320
Hai chữ số tận cùng của 51^51
2. Trung bình cộng của các giá trị của x thỏa mãn: (x - 2)^8 = (x - 2)^6
3. Số x âm thỏa mãn: 5^(x - 2).(x + 3) = 1
4. Số nguyên tố x thỏa mãn: (x - 7)^x+1 - (x - 7)^x+11 = 0
5. Tổng 3 số x,y,y biết: 2x = y; 3y = 2z và 4x - 3y + 2z = 36
6. Tập hợp các số hữu tỉ x thỏa mãn đẳng thức: x^2 - 25.x^4 = 0
7. Giá trị của x trong tỉ lệ thức: 3x+2/5x+7 = 3x-1/5x+1
8. Giá trị của x thỏa mãn: (3x - 2)^5 = -243
9. Tổng của 2 số x,y thỏa mãn: !x-2007! = !y-2008! < hoặc = 0
10. số hữu tỉ dương và âm x thỏa mãn: (2x - 3)^2 = 16
11. Tập hợp các giá trị của x thỏa mãn đẳng thức: x^6 = 9.x^4
12. Số hữu tỉ x thỏa mãn: |x|. |x^2+3/4| = X
có khùng hk vậy hùng tự đăng tự giải ls
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Trong tất cả các cặp (x;y) thỏa mãn log x 2 + y 2 + 2 2 x - 4 y + 6 ≥ 1 , tìm m để tồn tại duy nhất cặp (x;y) sao cho x 2 + y 2 + 2 x - 2 y + 2 - m = 0 .
A. 13 - 3 v à 13 + 3
B. 13 - 3
C. 13 - 3 2
D. 13 - 3 2 và 13 + 3 2
bài 1:Chứng tỏ rằng:
a) a = 20053 - 1 chia hết cho 2004
b) b= 20053+125 chia hết cho 2010
bài 2: Chứng tỏ rằng:
a) P = x6+1 chia hết cho x2+1
b) Q = x6-y6 chia hết cho x-y và chia hết cho x+y
bài 3: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 4: tìm cặp số (x,y) thỏa mãn đẳng thức:
( 2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32
giúp mình với,mk cảm ơn.
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
bài 4 í, có chắc đề đúng ko z
đề bài => 8x3 - y3 + 8x3 + y3 - 16x3 + 16xy = 32
=> 16xy = 32
=> xy = 2
=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)
Bài 1:Tìm giá trị của x để thõa mãn các đẳng thức sau:
a,2x(x-1)-x^2+6=0
b,x^4-2x^2(3+2x^2)+3x^2(x^2+1)=-3
c,(x+1)(x^2-x+1)-2x=x(x-2)(x+2)
d,(x+3)(x^2-3x+9)-x(x-2)(x+2)=15
giúp mk vs mk cần gấp
a) \(2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+1+5=0\)
\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)
Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)
b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\)
\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)
\(\Leftrightarrow3-3x^2=0\)
\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)
\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)
\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)
\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy x=\(\dfrac{-1}{2}\)
d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)
\(\Leftrightarrow x^3-27-x^3+4x-15=0\)
\(\Leftrightarrow4x-42=0\)
\(\Leftrightarrow x=10,5\)
Vậy x=10,5
Bài 1: Tìm các cặp số nguyên x;y thỏa mãn 2xy+2x-3y+5=0