a, \(\left\{{}\begin{matrix}3\left(2x-1\right)^2\ge0\\7\left(3y+5\right)^2\ge0\end{matrix}\right.\Rightarrow3\left(2x-1\right)^2+7\left(3y+5\right)^2\ge0\)
Mà \(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy...
b, \(x^2+y^2-2x+10y+26=0\)
\(\Leftrightarrow x^2-2x+1+y^2+10+25=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
Mà \(\left(x-1\right)^2+\left(y+5\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
Vậy...