TÌM GIÁ TRỊ LỚN NHẤT
M=-5x^2-4x+11
tìm giá trị lớn nhất của 4/4x^2 + 5x^2 - 4xy + 4x - 14y + 13
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị lớn nhất của biểu thức A=15 - 4x^2+5x
\(A=15-4x^2+5x\)
\(\Rightarrow A=-4x^2+5x+15\)
\(\Rightarrow A=-4\left(x^2+\dfrac{5}{4}x+\dfrac{25}{64}\right)+\dfrac{25}{16}+15\)
\(\Rightarrow A=-4\left(x+\dfrac{5}{8}\right)^2+\dfrac{265}{16}\)
mà \(-4\left(x+\dfrac{5}{8}\right)^2\le0,\forall x\in R\)
\(\Rightarrow A=-4\left(x+\dfrac{5}{8}\right)^2+\dfrac{265}{16}\le\dfrac{265}{16}\)
\(\Rightarrow GTLN\left(A\right)=\dfrac{265}{16}\left(tại.x=-\dfrac{5}{8}\right)\)
Tìm giá trị lớn nhất của biểu thức
a) M= -125-3|x^2-4| -2|x+2|
b) N= -5x^2 -4x+1
Giá trị nhỏ nhất
a, 4x^2+4x+11
b, x^2-6x+10
c,2x^2-5x+3
giá trị lớn nhất
a, 7- 6x -x^2
b, 4x -x^2+1
c,3x -x^2
bài 1:
b, x2 - 6x +10=x2 - 2.x.3 +9 +1=(x - 3)2 +1
Vì (x-3)2 >= 0 với mọi x
=> (x-3)2 +1 >= 1 với mọi x
vậy GTNN của biểu thức bằng 1 <=> x-3=0<=> x=3
a) Tìm x để phân thức M = 8 x 2 − 4 x + 12 đạt giá trị lớn nhất;
b) Tìm x để phân thức N = − 5 x 2 + 2 x + 11 đạt giá trị nhỏ nhất.
a) * Nếu M ≥ a ⇔ 1 M ≤ 1 a ;
* Nếu M ≤ a ⇔ 1 M ≥ 1 a ;
b) Ta có x 2 - 4x + 12 = ( x - 2 ) 2 + 8 ≥ 8 hay 1 x 2 + 2 x + 11 ≤ 1 10 ⇒ N ≥ − 1 2
Giá trị nhỏ nhất của N = − 1 2 khi x = -1.
Tìm giá trị lớn nhất -2x^2-8x+1
-4xy+4x-y^2-5x^2+3 giúp chi tiết
a: \(-2x^2-8x+1\)
\(=-2x^2-8x-8+9\)
\(=-2\left(x^2+4x+4\right)+9\)
\(=-2\left(x+2\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(-5x^2-y^2-4xy+4x+3\)
\(=\left(-4x^2-4xy-y^2\right)+\left(-x^2+4x-4\right)+7\)
\(=-\left(2x+y\right)^2-\left(x-2\right)^2+7< =7\forall x,y\)
Dấu '=' xảy ra khi 2x+y=0 và x-2=0
=>x=2 và y=-2x=-4
bài 1 :Tìm giá trị nhỏ nhất của biểu thức :
a) A= x2 + 4x + 5
b) B= ( x+3 ) ( x-11 ) + 2016
c) C= x2 + 5x + 8
bài 2 : Tìm giá trị lớn nhất của biểu thức :
a) D= 5 - 8x - x2
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
Tìm giá trị lớn nhất của:
a) - 5x2 – 4x + 1 b) -3x2 - 4x +1