Cho A= 20+21+22+....+22015 và B= 22016.
Chứng tỏ A và B là 2 số nguyên liên tiếp.
1 Chứng tỏ rằng
a) A + 1 là 1 luỹ thừa của 2 Biết A = 1 + 2 + 22 + ... + 280
b) 2B - 1 là 1 luỹ thừa của 3 Biết B = 1 + 3 + 32 + ... + 399
2 Tìm số tự nhiên x biết
a) 2x . ( 1 + 2 + 22 + 23 + ... = 22015 ) + 1 = 22016
b) 8x - 1 = 1 + 2 + 22 + 23 + ... + 22015
( giải chi tiết hộ mình với ạ Cảm ơn <3 )
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
Cho A = 20 + 21 + 22 + 23 + ... + 219. và B = 220. Chứng minh rằng A và B là hai số tự nhiên liên tiếp
Bài 5 (0,5 điểm): Cho A = 20 + 21 + 22 + 23 + .... + 219 . Và B = 220. Và B = 220. Chứng minh rằng A và B là hai số tự nhiên liên tiếp.
\(2A=2^1+2^2+...+2^{20}\)
\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)
\(\Leftrightarrow A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(A=1+2+2^2+...+2^{19}\)
\(2A=2+2^2+2^3+...+2^{20}\)
\(2A-A=\left(2+2^2+2^3+...+2^{20}\right)-\left(1+2+2^2+...+2^{19}\right)=2^{20}-1\)
\(A=B-1\).
-Vậy A và B là 2 số tự nhiên liên tiếp.
A= 20+21+22+23+...+219
2A=21+22+23+24+...+220
A=(21+22+23+24+...+220)-(20+21+22+23+...+219)
A=220-20
A=220-1
Vì B=220 mà A=220-1 nên A và B là 2 số liền nhau
A=21+22+23+...+22016
chứng tỏ A chia hết cho 7
\(A=2^1+2^2+2^3+...+2^{2016}\)
\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)
\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)
\(\Rightarrow dpcm\)
Cho a và b là 2 số tự nhiên liên tiếp ( a < b ) . Chứng tỏ rằng a và b là 2 số nguyên tố cùng nhau
Số thứ nhất là n, số thứ 2 là n + 1, ƯC ( n, n+ 1)= a
Ta có : n chia hết cho a (1)
n + 1 chia hết cho a (2)
Từ (1) và (2) ta được :
n+ 1 - n chia hết cho a
=> 1 chia hết cho a
=> a = 1
=> ƯC ( n, n+1) = 1
=> n và n + 1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
Số lượng học sinh nam trong từng lớp của của một trường THCS được ghi lại trong bảng sau:
23 22 22 19 22 20 21 20 19 20
20 20 a 23 21 20 b c 21 23
Cho biết a, b, c là ba số tự nhiên chẵn liên tiếp tăn dần và a + b + c = 66. Hãy lập bảng tần số và nhận xét.
Do a + b + c là 3 số tự nhiên chẵn liên tiếp tăng dần
=> a + b + c = a + a + 2 + a + 4
= 3a + 6
= 3 . ( a + 2 )
=> a + b + c = 3 . ( a + 2 )
=> 3 . ( a + 2 ) = 66
=> a + 2 = 22
=> a = 20
Do a,b,c là 3 số tự nhiên chẵn liên tiếp tăng dần nên
=> a = 20 ; b = 22 ; c = 24
tự lập bảng và nhận xét
~ học tốt ~
Cho biết a và b là hai số tự nhiên liên tiếp ( a nhỏ hơn b) . Chứng tỏ a và b là hai số nguyên tố cùng nhau ?
Chi tiết chút nhé mấy bạn , vì ..................... mình ..................... ngu toán nhé !
Giả sử 2 số đó là a, b. Chẳng hạn b = a + 1. gọi d là ước chung lớn nhất của a, b. do cách phân tích của b = a+1 và d là ước của b,a nên d phải là ước của 1, nên d trùng 1
=>xong^^
Lưu ý a = b + c, một số là ước của a và b thì phải là ước của c, hoặc a, b chia hết một số thì c cũng phải chia hết số đó
Cho A= 3^0+3^1+3^2+...+3^2018 và B = 3 chứng tỏ 2A và B là 2 số nguyên liên tiếp.
Mn giúp mik nha!\(A=3^0+3^1+3^2+...+3^{2018}\)
\(3A=3^1+3^2+3^3+...+3^{2018}+3^{2019}\)
\(\Rightarrow3A-A=\left(3^1+3^2+...+3^{2019}\right)-\left(3^0+3^1+...+3^{2018}\right)\)
\(2A=3^{2019}-3^0=3^{2019}-1\)
Chứng tỏ rằng
a) Trong 2 số nguyên liên tiếp có một và chỉ một số chia hết cho 2
b) Trong 3 số nguyên liên tiếp có một và chỉ một số chia hết cho 3
a ) Gọi 2 số nguyên liên tiếp lần lượt là a và a + 1
* Nếu a là số chẵn => a chia hết cho 2
* Nếu a là số lẻ => a + 1 là số chẵn => a + 1 chia hết cho 2
Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2 .
b ) Gọi 3 số nguyên liên tiếp lần lượt là a , a + 1 và a + 2
* Nếu a chia hết cho 3 thì bài toán luôn đúng
* Nếu a chia 3 dư 1 thì a = 3k +1
=> a + 2 = 3k + 1 + 2 = 3k + 3
=> a + 2 chia hết cho 3
* Nếu a chia 3 dư 2 thì a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3
=> a + 1 chia hết cho 3
Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3 .
A=20+21+22+23+24+.........+22015+22016
Tìm số dư khi chia A cho 7.
A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016
=7(1+2^3+...+2^2013)+2^2016
Vì 2^2016 chia 7 dư 1
nên A chia 7 dư 1