\(2A=2^1+2^2+...+2^{20}\)
\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)
\(\Leftrightarrow A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(A=1+2+2^2+...+2^{19}\)
\(2A=2+2^2+2^3+...+2^{20}\)
\(2A-A=\left(2+2^2+2^3+...+2^{20}\right)-\left(1+2+2^2+...+2^{19}\right)=2^{20}-1\)
\(A=B-1\).
-Vậy A và B là 2 số tự nhiên liên tiếp.
A= 20+21+22+23+...+219
2A=21+22+23+24+...+220
A=(21+22+23+24+...+220)-(20+21+22+23+...+219)
A=220-20
A=220-1
Vì B=220 mà A=220-1 nên A và B là 2 số liền nhau