cho a,b,c là 3 cạnh của một tam giác.C/m A= \(4a^2b^2-\left(a^2+b^2-c^2\right)^2>0\)
Cho \(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)trong đó a,b,c là độ dài bao cạnh của một tam giác. Chứng Minh Rằng \(A>0\)
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)
\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)
(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))
Cho \(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\) trong đó a,b,c là độ dài ba cạnh của một tam giác.
Chứng minh rằng A>0
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
Cho a,b,c là độ dài 3 cạnh tam giác.C/M:\(2\cdot\left(a\cdot b+b\cdot c+c\cdot a\right)>a^2+b^2+c^2\)
\(a< b+c\Rightarrow a^2< ab+ac\)
Tương tự:\(b^2< bc+ab;c^2< ca+cb\)
Cộng lại có đpcm
Gọi a,b,c là độ dài của một tam giác. Chứng minh \(\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\)
\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\\ =\left(a^2+b^2-c^2+2ab\right)\left(a^2+b^2-c^2-2ab\right)\\ =\left[\left(a+b\right)^2-c^2\right]\left[\left(a-b\right)^2-c^2\right]\\ =-\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Tổng 2 cạnh tam giác > cạnh thứ 3 nên cả 4 thừa số trên đều dương.
=> đpcm
Cho đa thức M=\(\left(a^2+b^2-c^2\right)-4a^2b^2\)
a)phân tích đa thức thành nhân tử
b)chứng minh nếu a,b,c là các cạnh của tam giác thìM<0
Cho \(A=4a^2b^2-\left(a^2+b^2-c^2\right)\)
CMR: A >0 với a,b,c là độ dài ba cạnh của tam giác.
Cho a,b,c là 3 cạnh của 1 tam giác. Chứng minh rằng \(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
cho đa thức \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
a)phân tích đa thức ra nhân tử
b)chứng minh nếu a,b,c là số đa các cạnh của tam giác thì M<0
a)phân tích đa thức ra nhân tử
M = (a2+b2-c2)2 - 4a2b2 =(a2+b2-c2)2 - (2ab)2 = [ (a2+b2-c2) - 2ab] . [ (a2+b2-c2) + 2ab]
= [(a-b)2-c2] .[(a+b)2-c2] = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b)chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M<0
M = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
ta biết trong 1 tam giác tổng 2 cạnh luôn lớn hơn cạnh còn lại. Nếu a,b,c là số đo các cạnh của tam giác
ta luôn có: a+b+c > 0; a+b-c>0 ; a-b+c> 0; a-b-c = a -(b+c) <0
Vậy tích M = (a-b-c)(a-b+c)(a+b-c)(a+b+c) <0
1) \(M=\left(a^2+b^2-c^2\right)-4a^2b^2\)
a) CMR nếu a,b,c là số đo độ dài các cạnh của 1 hình tam giác thì M <0
olm mootj trang web mat day nhat hanh tinh dot nhien tru 20 diem ma khong lien quan j khong tra loi cau hoi linh tinh ma cung tru diem mat day : bo lao