giúp e bài 4,5 với ạaaa
Giúp e với ạaaa. E c.ơn trước
a) a//b vì c cắt a và b vông góc tại điểm A và B
Vì C1 và C2 là hai cặp góc đối đỉnh
⇒ C1=C2 (45o)
a, Vì a⊥c và b⊥c nên a//b
b, Ta có \(\widehat{C_1}=\widehat{C_2}=54^0\) (đối đỉnh)
Mà a//b nên \(\widehat{D_1}=180^0-\widehat{C_1}=126^0\) (trong cùng phía)
c, Vì a//b nên \(\widehat{C_1}=\widehat{MDN}=54^0\)
Xét tam giác MND có \(\widehat{NMD}=180^0-\widehat{N_1}-\widehat{MDN}=180^0-36^0-54^0=90^0\)
Vậy CM⊥MN
Giúp e với ạaaa
Lời giải:
a. Để $f(x)=x^2-2mx+3m+4\geq 0$ với mọi $x\in\mathbb{R}$ thì:
\(\left\{\begin{matrix}
a=1>0\\
\Delta'=m^2-3m-4\leq 0\end{matrix}\right.\Leftrightarrow m^2-3m-4\leq 0\)
$\Leftrightarrow (m+1)(m-4)\leq 0$
$\Leftrightarrow -1\leq m\leq 4$
b.
Để pt có 2 nghiệm pb cùng dấu thì:
\(\left\{\begin{matrix}
\Delta'=m^2-3m-4>0\\
P=3m+4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
(m+1)(m-4)> 0\\
m> \frac{-4}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m> 4 \text{hoặc} m< -1\\
m> \frac{-4}{3}\end{matrix}\right.\)
$\Leftrightarrow m>4$ hoặc $\frac{-4}{3}< m < -1$
Lời giải:
a. Để $f(x)=x^2-2mx+3m+4\geq 0$ với mọi $x\in\mathbb{R}$ thì:
\(\left\{\begin{matrix}
a=1>0\\
\Delta'=m^2-3m-4\leq 0\end{matrix}\right.\Leftrightarrow m^2-3m-4\leq 0\)
$\Leftrightarrow (m+1)(m-4)\leq 0$
$\Leftrightarrow -1\leq m\leq 4$
b.
Để pt có 2 nghiệm pb cùng dấu thì:
\(\left\{\begin{matrix}
\Delta'=m^2-3m-4>0\\
P=3m+4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
(m+1)(m-4)> 0\\
m> \frac{-4}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m> 4 \text{hoặc} m< -1\\
m> \frac{-4}{3}\end{matrix}\right.\)
$\Leftrightarrow m>4$ hoặc $\frac{-4}{3}< m < -1$
giúp e với ạaaa
Gọi chữ số hàng chục là x và chữ số hàng đơn vị là y (x;y là các chữ số từ 0 đến 9)
Do chữ số hàng chục hơn chữ số hàng đơn vị là 4
\(\Rightarrow x-y=4\)
Giá trị chữ số ban đầu: \(10x+y\)
Giá trị chữ số sau khi đổi chỗ: \(10y+x\)
Do tổng số mới và số cũ là 132 nên ta có pt:
\(10x+y+10y+x=132\Rightarrow11\left(x+y\right)=132\Rightarrow x+y=12\)
Ta được hệ: \(\left\{{}\begin{matrix}x-y=4\\x+y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
Vậy số đó là 84
Giải giúp e với ạaaa
Gọi số học sinh nam và số học sinh nữ lần lượt là a,b
Theo đề, ta có: a+b=46 và 2a+3b=118
=>a=20 và b=26
Giúp e 6,7 với ạaaa
Giúp e với m.n ạaaa
a: Phần đất đào lên là một hình lăng trụ đứng. Mặt đáy của hình lăng trụ đứng là hình thang có các cạnh đáy là 1,8m và 1,2m, chiều cao là 1,5m
Chiều cao là 20m
\(S_{đáy}=\dfrac{1.8+1.2}{2}\cdot1.5=1.5\cdot1,5=2.25\left(m^2\right)\)
Thể tích khối đất phải đào lên là:
2,25*20=40,5(m3)
Bề dày của lớp đất rải là:
40,5:20:1,5=27:20=1,35(m)
b: Số chuyến ô tô phải dùng là:
40,5:6=6,75
=>Cần 7 chuyến
Giúp e với ạaaa hleppppppp
Gọi giao của AO với (O) là D
=>AD=2R
ΔACD nội tiếp đường tròn đường kính AD
=>ΔACD vuông tại C
mà CB vuông góc AD
nên CB^2=AB*BD
=>CB^2=AB(2*R-AB)
=>1,1(2*R-1,1)=28,4^2
=>R=367,2m
=>AD=734,4(m)
\(AC=\sqrt{1.1^2+28.4^2}=28,42\left(m\right)\)
OA=OC=367,2m
\(cosAOC=\dfrac{OA^2+OC^2-AC^2}{2\cdot OA\cdot OC}\simeq0.998\)
=>góc AOC=4 độ
=>sđ cung AC=4 độ
Giúp mình 3 bài này với ạaaa
4.
a.
- Với \(m=0\Rightarrow y=-1\) hàm không có tiệm cận
- Với \(m\ne0\)
\(\lim\limits_{x\rightarrow\infty}\dfrac{x-1}{mx^2-x+1}=0\Rightarrow y=0\) là tiệm cận ngang
Xét phương trình \(mx^2-x+1=0\) có \(\Delta=1-4m\)
+ Với \(m>\dfrac{1}{4}\Rightarrow\Delta< 0\Rightarrow\) \(mx^2-x+1=0\) vô nghiệm hay ĐTHS ko có tiệm cận đứng
+ Với \(m=\dfrac{1}{4}\Rightarrow mx^2-x+1=0\) có nghiệm kép hay ĐTHS có 1 tiệm cận đứng
+ Với \(m< \dfrac{1}{4}\Rightarrow mx^2-x+1=0\) có 2 nghiệm pb (và luôn khác 1 với \(m\ne0\) ) nên ĐTHS có 2 tiệm cận đứng.
Kết luận...
4b.
- Với \(m=0\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{-1}{x^2-x-2}=0\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow\left\{-1;2\right\}}\dfrac{-1}{x^2-x-2}=\infty\) nên \(x=-1;x=2\) là 2 tiệm cận đứng
- Với \(m\ne0\)
\(\lim\limits_{x\rightarrow\infty}\dfrac{mx^3-1}{x^2-x-2}=\infty\) nên ĐTHS không có tiệm cận ngang
Phương trình \(x^2-x-2=0\) có 2 nghiệm \(x=\left\{-1;2\right\}\) nên:
+ Nếu \(m=-1\Rightarrow-x^3-1=0\) có 1 nghiệm \(x=-1\Rightarrow\) hàm có đúng 1 tiệm cận đứng \(x=2\)
+ Nếu \(m=\dfrac{1}{8}\Rightarrow\dfrac{1}{8}x^3-1=0\) có 1 nghiệm \(x=2\Rightarrow\) ĐTHS hàm có đúng 1 tiệm cận đứng \(x=-1\)
+ Nếu \(m\ne\left\{-1;\dfrac{1}{8}\right\}\Rightarrow mx^3-1=0\) có nghiệm khác \(\left\{-1;2\right\}\Rightarrow\) ĐTHS có 2 tiệm cận đứng.
Kết luận...
6.
Do ở cả 2 ý tử số đều khác 0 với mọi x nên ĐTHS có 2 tiệm cận đứng khi và chỉ khi mẫu số có 2 nghiệm pb.
Điều này tương đương với:
a.
\(\Delta'=\left(2m+3\right)^2-4\left(m^2-1\right)>0\)
\(\Leftrightarrow12m+13>0\Rightarrow m>-\dfrac{13}{12}\)
b.
\(\Delta'=\left(m+1\right)^2-12>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>-1+2\sqrt{3}\\m< -1-2\sqrt{3}\end{matrix}\right.\)
Giải giúp mình bài 3 với 4 ạaaa.
giúp tui hai bài này với ạaaa ♡
2:
1: x^3-5x+a chia hết cho x-3
=>x^3-9x+4x-12+a+12 chia hết cho x-3
=>a+12=0
=>a=-12
2: 2x^2+x+a chia hết cho x+3
=>2x^2+6x-5x-15+a+15 chia hết cho x+3
=>a+15=0
=>a=-15
3: x^3+2x^2+a chia hết cho x+3
=>x^3+3x^2-x^2+9+a-9 chia hết cho x+3
=>a-9=0
=>a=9
4: 4x^2-6x+a chia hết cho x-3
=>4x^2-12x+6x-18+a+18 chia hết cho x-3
=>a+18=0
=>a=-18
5: 2x^2+ax-4 chia hết cho x+4
=>2x^2+8x+(a-8)x+4a-32-4a+24 chia hết cho x+4
=>-4a+24=0
=>a=6
6: x^3-7x^2+ax chia hết cho x-2
=>x^3-2x^2-5x^2+10x+(a-10)x-2(a-10)+2(a-10) chia hết cho x-2
=>2(a-10)=0
=>a=10