Tìm x nguyên để \(6\sqrt{x}+1⋮2\sqrt{x}-3\)
A=\(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)
Cho P=A.B. Tìm số nguyên x để \(\sqrt{P}< \dfrac{1}{3}\)
Ta có: \(P=A\cdot B\) (ĐK: \(x>0;x\ne4\))
\(=\left(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left[\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(\dfrac{3+\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(1+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+9}\)
Với x > 0; x ≠ 4 thì \(\sqrt{P}< \dfrac{1}{3}\Leftrightarrow P< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}-\dfrac{1}{9}< 0\)
\(\Leftrightarrow\dfrac{9\left(\sqrt{x}-1\right)}{9\left(\sqrt{x}+9\right)}-\dfrac{\sqrt{x}+9}{9\left(\sqrt{x}+9\right)}< 0\)
\(\Leftrightarrow\dfrac{9\sqrt{x}-9-\sqrt{x}-9}{9\sqrt{x}+81}< 0\)
\(\Leftrightarrow\dfrac{8\sqrt{x}-18}{9\sqrt{x}+18}< 0\)
Ta thấy: \(9\sqrt{x}+18>0\forall x\)
\(\Rightarrow8\sqrt{x}-18< 0\)
\(\Rightarrow\sqrt{x}< \dfrac{18}{8}\)
\(\Rightarrow\sqrt{x}< \dfrac{9}{4}\Leftrightarrow x< \dfrac{81}{16}\)
Kết hợp với điều kiện, ta được: \(0< x\le5\)\(;x\ne4\)
\(\Rightarrow x\in\left\{1;2;3;5\right\};x\in Z\) thì \(\sqrt{P}< \dfrac{1}{3}\)
#Urushi
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
Cho A= \(\dfrac{\sqrt{x}+4}{{}\sqrt{x}-1}\) và B= \(\dfrac{x+2\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)} -\dfrac{3\sqrt{x}-3}{x-1}\) (đk: x>0,x≠1)
a) Rút gọn P=A.B
b) Tìm x để P(\(\sqrt{x}+1\)) ≤ 6-x
c) Tìm x để P nhận giá trị nguyên
Q = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a)Tìm điều kiện xác định
b)Rút gọn
c)Tìm x nguyên để Q nguyên
d)Tìm x để Q > 0
Đặt \(\sqrt{x}=a\) , a \(\ge0\)
a , Khi đó biểu thức trở thành :
Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)
Đến đây làm như lớp 8 thôi
cho biểu thức \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)
a, rút gon A
b,Tìm x để A = -2
c,Tìm x nguyên để A cũng là số nguyên
a: Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-4-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-1\)
\(=\dfrac{x-2\sqrt{x}-x+1}{x-1}\)
\(=\dfrac{-2\sqrt{x}+1}{x-1}\)
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên
Bài 5:
\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)
Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.
$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất
$\Rightarrow \sqrt{x}-2=-1$
$\Leftrightarrow x=1$ (thỏa mãn đkxđ)
Bài 6:
$D(\sqrt{x}+1)=x-3$
$D^2(x+2\sqrt{x}+1)=(x-3)^2$
$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên
Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên
Với $D=0\Leftrightarrow x=3$ (tm)
Với $\sqrt{x}$ nguyên:
$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$
$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$
$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$
$\Leftrightarrow x=0; 1$
Vì $x\neq 1$ nên $x=0$.
Vậy $x=0; 3$
Bài 6:
Để D nguyên thì \(x-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\)
hay \(x\in\left\{0;1\right\}\)
\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a. Tìm điều kiện xác định
b. Rút gọn
c. Tìm x nguyên để q nhận giá trị nguyên
bạn đặt \(\sqrt{x}=a\) , a> 0
Thay \(\sqrt{x}=a\) vô biểu thức => rút gọn ra => thay trở lại
Cho \(p=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x+2}}+\frac{3\cdot\left(1-\sqrt{x}\right)}{x-5\sqrt{x}+6}\)
a)Tìm điều kiện của x để p có nghĩa
b)Rút gọn biểu thức p
c)Tìm x để p>2
d)Tìm x nguyên để 5p nhận giá trị nguyên
Cho biểu thức:
\(A=\left(1-\dfrac{\sqrt{x}}{\sqrt{x+1}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x+6}}\right)\)
a) Rút gọn A
b) Tìm x để A<0
c) Tìm giá trị nhỏ nhất của A
d) Tính giá trị nguyên của x để A nhận giá trị nguyên
P=\(\frac{2\sqrt{x}+13}{x+5\sqrt{x}+6}+\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}-1}{\sqrt{x}+3}\)
1) rút gọn P
2)tìm các giá trị nguyên của x để x nguyên