\(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\) :") giúp mik vs
Giúp mik bài này vs . Mik đag cần gấp
Tính:
A=\(\sqrt{4}-2\sqrt{3}+\sqrt{7}-4\sqrt{3}\)
B=\(\sqrt{3}+\sqrt{8}+\sqrt{3}-\sqrt{8}\)
Bài làm:
a) \(A=\sqrt{4}-2\sqrt{3}+\sqrt{7}-4\sqrt{3}\)
\(A=2+\sqrt{7}-6\sqrt{3}\)
b) \(B=\sqrt{3}+\sqrt{8}+\sqrt{3}-\sqrt{8}\)
\(B=2\sqrt{3}\)
\(\dfrac{1}{\sqrt{4}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+.........+\dfrac{1}{\sqrt{34}+\sqrt{35}}+\dfrac{1}{\sqrt{35}\sqrt{36}}\)
giúp mik vs ạ mình cảm ơn ạ!!
đoạn cuối thiếu dấu"+"
\(A=\dfrac{\sqrt{4}-\sqrt{5}}{4-5}+\dfrac{\sqrt{5}-\sqrt{6}}{5-6}+....+\dfrac{\sqrt{34}-\sqrt{35}}{34-35}+\dfrac{\sqrt{35}-\sqrt{36}}{335-36}\)
\(A=\dfrac{\sqrt{4}-\sqrt{5}+\sqrt{5}-\sqrt{6}+....+\sqrt{35}-\sqrt{36}}{-1}=\dfrac{\sqrt{4}-\sqrt{36}}{-1}\)
\(A=\sqrt{36}-\sqrt{4}=6-2=4\)
\(\dfrac{1}{\sqrt{4}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{7}}+...+\dfrac{1}{\sqrt{34}+\sqrt{35}}+\dfrac{1}{\sqrt{35}+\sqrt{36}}\)
\(=-\sqrt{4}+\sqrt{5}-\sqrt{5}+\sqrt{6}-...-\sqrt{35}+\sqrt{36}\)
\(=6-2=4\)
\(\sqrt{a^3+a^2+4}+\sqrt{a^3+a^2-3}=7\)
giúp mik vs ạ
ĐKXĐ: \(a^3+a^2-3\ge0\) (1)
Đặt \(\sqrt{a^3+a^2-3}=x\ge0\Rightarrow a^3+a^2+4=x^2+7\)
Phương trình trở thành:
\(\sqrt{x^2+7}+x=7\)
\(\Leftrightarrow\sqrt{x^2+7}=7-x\) (\(x\le7\))
\(\Leftrightarrow x^2+7=x^2-14x+49\)
\(\Rightarrow14x=42\)
\(\Rightarrow x=3\)
\(\Rightarrow a^3+a^2-3=9\)
\(\Rightarrow a^3+a^2-12=0\)
\(\Rightarrow\left(a-2\right)\left(a^2+3a+6\right)=0\)
\(\Rightarrow a=2\) (thỏa mãn (1))
1) thực hiện phép tính
d)\(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
e) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
giúp mk vs ạ mk cần gấp
1) thực hiện phép tính:
a) \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
b) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
giúp mk vs ah mk đang cần gấp lắm
a: Ta có: \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)
=3
Mk đag cần gấp mn giúp mk vs ạ !
Câu 1 Tìm x , biết
a)\(\sqrt{4\text{x}^2+4\text{x}+1}=6\)
b)\(\sqrt{4\text{x}^2-4\sqrt{7}x+7=\sqrt{7}}\)
c\(\sqrt{x^2+2\sqrt{3}x+3}=2\sqrt[]{3}\)
d)\(\sqrt{\left(x-3\right)^2}=9\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)
d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)
giải giúp mik vs
A=\(\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
B=\(\sqrt{3+\sqrt{8}+\sqrt{3-\sqrt{8}}}\)
Ta có : \(A=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{2^2-2.2\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}-1+2-\sqrt{3}=1\)
Ta có : \(B=\sqrt{3+\sqrt{8}+\sqrt{3-\sqrt{8}}}\)
\(=\sqrt{3+\sqrt{8}+\sqrt{2-2\sqrt{2}+1}}\)\(=\sqrt{3+\sqrt{8}+\sqrt{\left(\sqrt{2}-1\right)^2}}\)
\(=\sqrt{3+2\sqrt{2}+\sqrt{2}-1}\) \(=\sqrt{2+3\sqrt{2}}\)
Cho A=\(\sqrt{x}-x\)
a) tính giá trị của P khi x=7-4\(\sqrt{3}\)
b) tìm GTLN của A
mik đg cần gấp ai đó giúp mik vs !
a: Thay \(x=7-4\sqrt{3}\) vào A, ta được:
\(A=2-\sqrt{3}-7+4\sqrt{3}=3\sqrt{3}-5\)
\(\sqrt{3-2\sqrt{ }2}+\sqrt{4-2\sqrt{ }3}-\sqrt{7-4\sqrt{ }3}\)
Mấy bn giúp mk vs ạ....
\(\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=|\sqrt{2}-1|=\sqrt{2}-1\)
Tương tự \(\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\); \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
\(\Rightarrow BTT=\sqrt{2}-1+\sqrt{3}-1+2-\sqrt{3}=\sqrt{2}\)
\(\sqrt{3-2\sqrt{2}}+\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{2-2\sqrt{2}+1}+\sqrt{3-2\sqrt{3}+1}-\sqrt{4-4\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{2}-1+\sqrt{3}-1-2+\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{2}-4\)
\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
giúp vs ạ !!!
\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+2+2-\sqrt{3}\)
\(=4\)
Còn cách nữa là bình phương
Đag làm thì ấn nhầm trả lời .V
Cách bình phương đây
\(B=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(\Rightarrow B^2=7+4\sqrt{3}+2\sqrt{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+7-4\sqrt{3}\)
\(=14+2\sqrt{49-48}\)
\(=14+2\)
\(=16\)
\(\Rightarrow B=\sqrt{16}=4\)
\(B=\sqrt{\left(2\right)^2+4\sqrt{3}+3}+\sqrt{\left(2\right)^2-4\sqrt{3}+3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(2+\sqrt{3}+2-\sqrt{3}=4\)