Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Mạt
Xem chi tiết
Akai Haruma
26 tháng 7 2021 lúc 10:50

Lời giải:
$B=5x^2+2x-3=5(x^2+\frac{2}{5}x+\frac{1}{5^2})-\frac{16}{5}$

$=5(x+\frac{1}{5})^2-\frac{16}{5}$

$\geq 5.0-\frac{16}{5}=\frac{-16}{5}$
Vậy GTNN của $B$ là $\frac{-16}{5}$. Giá trị này đạt tại $x+\frac{1}{5}=0\Leftrightarrow x=-\frac{1}{5}$

---------------------------------

$C=-9x^2+5x+1=1-(9x^2-5x)$

$=\frac{61}{36}-[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]$

$=\frac{61}{36}-(3x-\frac{5}{6})^2$

$\leq \frac{61}{36}$

Vậy gtln của $C$ là $\frac{61}{36}$. Giá trị này đạt tại $3x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{18}$

-----------------------

$D=16x^2-8x+12=(4x)^2-2.4x.1+1+11$

$=(4x-1)^2+11\geq 0+11=11$

Vậy gtnn của $D$ là $11$. Giá trị này đạt tại $4x-1=0\Leftrightarrow x=\frac{1}{4}$

Trên con đường thành côn...
26 tháng 7 2021 lúc 10:51

undefined

Nguyên Dương
Xem chi tiết
Nguyên Dương
Xem chi tiết
ngonhuminh
21 tháng 10 2016 lúc 11:05

A=...

dăt 5x=y viet cho gon

x=y/5

-A=y^2-y/5+3

=(y-1/10)^2+3-1/100

A=-(y-1/10)^2-299/100

GTLN=-299/100 khi y=1/10 

Hello It is Me123
Xem chi tiết
Nguyễn Nhật Ánh Dương
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 23:15

Bài 2: 

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

f: Ta có: \(x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=2

e: Ta có: \(3x^2-6x+1\)

\(=3\left(x^2-2x+\dfrac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\dfrac{2}{3}\right)\)

\(=3\left(x-1\right)^2-2\ge-2\forall x\)

Dấu '=' xảy ra khi x=1

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 23:17

Bài 1: 

a: Ta có: \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)

b: Ta có: \(x^3-3x+2=0\)

\(\Leftrightarrow x^3-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Minh quý Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 11 2021 lúc 11:52

\(x^2+y^2=x+y\\ \Leftrightarrow x^2-x+y^2-y=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\\ A=x+y=\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)+1\)

Áp dụng Bunhiacopski:

\(\left[\left(x-\dfrac{1}{2}\right)+\left(y-\dfrac{1}{2}\right)\right]^2\le\left(1^2+1^2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2\right]=2\cdot\dfrac{1}{2}=1\\ \Leftrightarrow A\le1+1=2\)\(A_{max}=2\Leftrightarrow x=y=1\)

Nguyễn Việt Lâm
14 tháng 11 2021 lúc 14:35

\(x^2+y^2\ge0\Rightarrow x+y=x^2+y^2\ge0\)

\(A_{min}=0\) khi \(x=y=0\)

Akai Haruma
14 tháng 11 2021 lúc 17:50

Cách tìm max khác:

Ta có:

$(x-1)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow x^2+1\geq 2x$

Tương tự: $y^2+1\geq 2y$

$\Rightarrow 2(x+y)\leq x^2+y^2+2=x+y+2$

$\Rightarrow x+y\leq 2$ hay $A\leq 2$
Vậy $A_{\max}=2$ khi $x=y=1$

Minh quý Nguyễn
Xem chi tiết
Hoang Anh Vu
Xem chi tiết
Thanh Hà
30 tháng 6 2017 lúc 9:44

\(A=x^2-6x+11\)

\(=x^2-2x.3+3^2+2\)

\(=\left(x-3\right)^2+2\)

\(\Rightarrow A\ge2\)

\(\Rightarrow MinA=2\)

\(Khi\)\(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)

Chúc bn học giỏi nhoa!!!

Kaito Kid
5 tháng 11 2017 lúc 10:53

ban kia lam dung roi do

k tui nha

thanks

nguyễn phương thảo
Xem chi tiết
nguyentancuong
14 tháng 8 2016 lúc 23:48

Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)

A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2

alibaba nguyễn
15 tháng 8 2016 lúc 7:06
Dễ thấy hàm số chỉ có 1 điểm cực trị là gtnn nên giá trị lớn nhất là ở 1 trong 2 điểm bị chặn của hàm số thế vào ta được gtln là 30 với x=6 hoặc hoặc -5