Chứng minh rằng nếu 0\(\le\)a,b,c\(\le\)1 thì 1+ab+bc+ca\(\ge\) a+b+c
Cho 3 số a,b,c thỏa mãn \(-1\le a,b,c\le2\) và a+b+c=0
Chứng minh rằng \(ab+bc+ca\ge-3\)
Đặt \(\left(a;b;c\right)=\left(x-1;y-1;z-1\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le3\\x+y+z=3\end{matrix}\right.\)
Ta có: \(ab+bc+ca=\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\)
\(=xy+yz+zx-2\left(x+y+z\right)+3=xy+yz+zx-3\)
Do \(x;y;z\ge0\Rightarrow xy+yz+zx\ge0\)
\(\Rightarrow xy+yz+zx-3\ge-3\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và hoán vị
với a,b,c ≥ 0 và a+b+c=3. chứng minh rằng:
(1) a/a+2bc+b/b+2ac+c/c+2ab ≥1 (2)a/2a+bc+b/2b+ac+c/2c+ab ≤ 1
Cho 3 số 0≤a≤b≤c≤1 chứng minh rằng a/bc+1=b/ac+1=c/ab+1≤2
Bạn tham khảo ở đây nhé
https://olm.vn/hoi-dap/detail/49527613309.html
Cho 3 số thực a,b,c thỏa mãn:\(1\le a\le2;1\le b\le2;1\le a\le2\).Chứng minh rằng \(a^2+b^2+c^2+ab+bc+ca+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)^3\)
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)
Theo đề bài ta có
\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)
Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)
Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)
Khi đó BĐT <=>
\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)
<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)
Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)
Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)
Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)
Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)
\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Ta lại có
\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)
Tương tự \(b^2\le3b-2;c^2\le3c-2\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)
\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)
Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)
\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)
Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)
\(-\left[4\left(a+b+c\right)-12\right]=0\)
\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\le a^2+b^2+c^2+ab+bc+ca\)
hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)
Cho a, b, c >0 và a + b + c ≤ 3 . Chứng minh rằng :
\(\frac{4}{a^2+b^2+c^2}+\frac{2021}{ab++bc+ca}\) ≥ 675
\(\frac{4}{a^2+b^2+c^2}+\frac{2021}{ab+bc+ac}=\frac{4}{a^2+b^2+c^2}+\frac{4}{ab+bc+ac}+\frac{4}{ab+bc+ac}+\frac{2013}{ab+bc+ac}\)
\(=4\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\right)+\frac{2013}{ab+bc+ac}\)
\(\ge\frac{36}{\left(a+b+c\right)^2}+\frac{2013}{ab+bc+ac}\ge\frac{36}{\left(a+b+c\right)^2}+\frac{2013}{\frac{\left(a+b+c\right)^2}{3}}\ge4+671=675\)
\("="\Leftrightarrow a=b=c=1\)
Chứng minh rằng nếu a , b , c > 0 thỏa mãn abc = ab + bc + ca thì \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}<\frac{3}{16}\left(\le\frac{3}{32}\right)\)
Cho a,b,c thuộc [0,1] và ko đồng thời bằng 0.Chứng minh rằng
\(\dfrac{1}{1+b+ca}\)+\(\dfrac{1}{1+c+ab}\)+\(\dfrac{1}{1+a+bc}\)\(\le\)\(\dfrac{3}{a+b+c}\)
Do \(a;b;c\in\left[0;1\right]\Rightarrow\left(1-a\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow ac+1\ge a+c\)
\(\Rightarrow1+b+ac\ge a+b+c\Rightarrow\dfrac{1}{1+b+ac}\le\dfrac{1}{a+b+c}\)
Tương tự: \(\dfrac{1}{1+c+ab}\le\dfrac{1}{a+b+c}\) ; \(\dfrac{1}{1+a+bc}\le\dfrac{1}{a+b+c}\)
Cộng vế với vế:
\(\dfrac{1}{1+b+ca}+\dfrac{1}{1+c+ab}+\dfrac{1}{1+a+bc}\le\dfrac{3}{a+b+c}\) (đpcm)
Cho \(a,b,c\) là ba số dương tùy ý.
1) Chứng minh rằng \(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}\ge\left(a^3+b^3+c^3\right)\).
2) Chứng minh rằng nếu \(a,b,c\) thỏa mãn thêm điều kiện \(abc\le\dfrac{1}{3}\) thì
\(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}\ge\left(a^3+b^3+c^3\right)^2\).
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Cho 3 số dương a,b,c biết 0≤ a ≤ b ≤ c ≤ 1
Chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\) ≤ 2
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)(1)
Tiếp tục chứng minh ta được: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1\ge c\\ab\ge0\end{matrix}\right.\)(2)
Cộng theo vế pt(1) với pt(2) ta được:
\(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(ab+1\right)\ge a+b+c\)
Nên: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\)
Chứng minh tương tự suy ra đpcm
Câu hỏi của Phạm Quốc Anh - Toán lớp 7 - Học toán với OnlineMath