7x^2(5x-10)+x(10-5x)=0
Cho đa thức f(x)= -3x^4 - 5x^2 + 13x^4 - 7x + 5x^3 - 10-x^2 + 7x - 2
Chứng tỏ rằng f(-1) + f(1) + 14 = 0
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
Tìm x biết:
a) 2x2 - 3x - 2 = 0.
b) 3x2 - 7x - 10 = 0.
c) 2x2 - 5x + 3 = 0.
a) 2x2 - 3x - 2 = 0.
<=> (2x + 1)(x - 2) = 0
<=> 2x + 1 = 0 hoặc x - 2 = 0
<=> x = -1/2 hoặc x = 2
b) 3x2 - 7x - 10 = 0.
<=> (x + 1)(3x - 10) = 0
<=> x = -1 hoặc x = 10/3
c) 2x2 - 5x + 3 = 0.
<=> (x - 1)(2x - 3) = 0
<=> x = 1 hoặc x = 3/2
tim x biết
3x+4=0
2x*(x-1)-(1+2x)=-34
X^2+9x-10=0
(7x-1)*(2+5x)=0
\(3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\\ 2x\left(x-1\right)-\left(1+2x\right)=-34\\ \Leftrightarrow2x^2-2x-1-2x=-34\\ \Leftrightarrow2x^2-4x+33=0\\ \Leftrightarrow2\left(x^2-2x+1\right)+30=0\\ \Leftrightarrow2\left(x-1\right)^2+30=0\\ \Leftrightarrow x\in\varnothing\left[2\left(x-1\right)^2+30\ge30>0\right]\\ x^2+9x-10=0\\ \Leftrightarrow x^2-x+10x-10=0\\ \Leftrightarrow\left(x-1\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\\ \left(7x-1\right)\left(2+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7x-1=0\\2+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
giải phương trình tích :
a) ( 2x - 10 ) ( 5x + 25) = 0
b) ( x + 15) ( x - 2 ) = 0
c) x2 - 7x =0
a: (2x-10)(5x+25)=0
=>2x-10=0 hoặc 5x+25=0
=>x=5 hoặc x=-5
b: (x+15)(x-2)=0
=>x+15=0 hoặc x-2=0
=>x=-15 hoặc x=2
c: =>x(x-7)=0
=>x=0 hoặc x=7
a, (2x - 10) (5x + 25) = 0
⇒ 2x - 10 = 0 hoặc 5x + 25 = 0
⇒ x = 5 hoặc x = -5
b, (x + 15) (x - 2) = 0
⇒ x + 15 = 0 hoặc x - 2 = 0
⇒ x = -15 hoặc x = 2
c: =>x(x-7)=0
=>x=0 hoặc x=7
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
1, 16 - 8x = 0
<=>-8x = 16
<=> x = -2
Vậy_
2, 7x + 14 = 0
<=> 7x = -14
<=> x = -2
3, 5 - 2x = 0
<=> - 2x = -5
<=> x =\(\frac{5}{2}\)
Vậy_
4, 3x - 5 = 7
<=> 3x = 7 + 5
<=> 3x = 12
<=> x = 4
Vậy...
5, 8 - 3x = 6
<=> - 3x = 6 - 8
<=> -3x = - 2
<=> x =\(\frac{2}{3}\)
Vậy......
Giải phương trình bậc 3:
a)2x^3+5x^2-3x-10=0
b)x^3-2x^2+7x+66=0
c)x^3+3x-4=0
d)x^3+7x^2-48=0
e)4x^3+4x^2-x+14=0
f)3x^3-4x^2+5x+500=0
(x-3)(2x+1)(4-5x)=0
2x3-5x2+3x=0
(x-3)2=(2x+1)
(3x-1)(x2+2)=(3x-1)(7x-10)
a) \(\left(x-3\right)\left(2x+1\right)\left(4-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy ..................
b) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy .................
c) \(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy .......................
d) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[x\left(x-3\right)-4\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy ...................
a,\(\left(x-3\right)\left(2x+1\right)\left(4-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\\4-5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...
b,\(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\\x=1\end{matrix}\right.\)
Vậy...
c,Sửa đề:
\(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-3+2x+1\right)\left(x-3-2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\-x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-4\end{matrix}\right.\)
Vậy...
d,\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+4=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-4\\x=3\end{matrix}\right.\)
Vậy...
1).(4-3x)(10-5x)=0 2).(7-2x)(4+8x)=0 3).(9-7x)(11-3x)=0
4).(7-14x)(x-2)=0 5).(\(\dfrac{7}{8}\)-2x)(3x+\(\dfrac{1}{3}\))=0 6).3x-2x\(^2\)
7).5x+10x\(^2\)
1.
<=> \(\left[{}\begin{matrix}4-3x=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)
2.
<=>\(\left[{}\begin{matrix}7-2x=0\\4+8x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
3.
<=>\(\left[{}\begin{matrix}9-7x=0\\11-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{7}\\x=\dfrac{11}{3}\end{matrix}\right.\)
4.
<=>\(\left[{}\begin{matrix}7-14x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
5.
<=>\(\left[{}\begin{matrix}\dfrac{7}{8}-2x=0\\3x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{16}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
6,7. ko đủ điều kiện tìm
Tìm X biết.
a) 7x - 10 = 5x - 6
b) 3x( x - 2 ) + x - 2 = 0
c) 2x2 + 7x - 4 = 0
a) \(7x-10=5x-6\)
\(7x-5x=-6+10\)
\(2x=4\)
\(x=2\)
b) \(3x\left(x-2\right)+x-2=0\)
\(\left(x-2\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{3}\end{cases}}\)
c) \(2x^2+7x-4=0\)
\(2x^2-x+8x-4=0\)
\(x\left(2x-1\right)+2\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\)
7x-10=5x-6<=>7x-5x=-6+10<=>2x=4=>x=2
3x(x-2)+x-2=0<=>(x-2)(3x+1)=0<=>x-2=0=>x=2 HAY 3x+1=0=>x=-1/3
2x2+7x-4=0.
Câu cuối xem có lộn đề không nha bạn ơi!!!
a) 7x - 10 = 5x - 6
<=> 7x - 5x = -6 + 10
<=> 2x = 4
<=> x = 2
b) 3x( x - 2 ) + x - 2 = 0
<=> 3x( x - 2 ) + 1( x - 2 ) = 0
<=> ( x - 2 )( 3x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{3}\end{cases}}\)
c) 2x2 + 7x - 4 = 0
<=> 2x2 + 8x - x - 4 = 0
<=> 2x( x + 4 ) - 1( x + 4 ) = 0
<=> ( x + 4 )( 2x - 1 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{1}{2}\end{cases}}\)