cho tam giác abc vuông tại a, phân giác ad. biết bd=4 cm, dc=10 cm. tính ab và ac
Cho tam giác ABC vuông tại A, đường phân giác BD. Tính AB, BC biết AD = 4 cm và DC = 5 cm.
Áp dụng tính chất đường phân giác BD của tam giác
ABC, ta có:
với t > 0
Áp dụng định lý Py – ta – go ta có:
B C 2 = A C 2 + A B 2 hay ( 5 t ) 2 = 9 2 + ( 4 t ) 2 ⇔ ( 3 t ) 2 = 9 2 ⇒ t = 3 (vì t > 0 )
Khi đó: AB = 12cm, BC = 15cm
Cho tam giác ABC vuông tại A, đường phân giác BD. Tính AB, BC biết AD = 4 cm và DC = 5 cm.
Áp dụng tính chất đường phân giác BD của tam giác ABC, ta có:
với t > 0
Áp dụng định lý Py – ta – go ta có:
Khi đó: AB = 12cm, BC = 15cm
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD a, Tính độ AD, DC b, CM: AD.BI=BD.HB c, Chứng minh tam giác AID là tam giác cân ? d, CM: IH trên IA = AD trên DC
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔBAC có BD là phan giác
=>AD/AB=DC/BC
=>AD/3=DC/5=8/8=1
=>AD=3cm; DC=5cm
b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>AD/HI=BA/BH
=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID
=>ΔAID cân tại A
Cho tam giác ABC vuông tại A ,có phân giác BD, biết AB = 9 cm, BC = 15 cm .Tính AC, DC, DA?
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=12cm\)
Vì BD là pg \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{12}{24}=\dfrac{1}{2}\Rightarrow DC=\dfrac{15}{2}cm;DA=\dfrac{9}{2}cm\)
Cho tam giác ABC vuông tại A biết AB = 6 cm BC = 10 cm đường phân giác BD ( D thuộc AC ) kẻ DE vuông góc BC chứng minh tam giác ECD tương đương tam giác ACB Tính AD? Tính tỉ số diện tích của tam giác ECD và tam giác ACB
a, Xét tam giác ECD và tam giác ACB ta có
^CED = ^CAB = 900
^C _ chung
Vậy tam giác ECD ~ tam giác ACB ( g.g )
b, Áp dụng định lí Pytago ta có :
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=100-36=64\Rightarrow AC=8\)cm
Do BD là đường phân giác ^B
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\) mà \(DC=AC-AD=8-AD\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\Rightarrow48-6AD=10AD\Rightarrow16AD=48\Rightarrow AD=3\)cm
Vậy AD = 3 cm
c, Ta có : \(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{\dfrac{1}{2}ED.EC}{\dfrac{1}{2}AC.AB}=\dfrac{ED.EC}{6.8}=\dfrac{ED.EC}{48}\)(*)
\(\dfrac{EC}{AC}=\dfrac{ED}{AB}=\dfrac{CD}{BC}\)( tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{EC}{8}=\dfrac{5}{10}\)( CD = AC - AD = 8 - 3 = 5 cm )
\(\Rightarrow EC=\dfrac{40}{10}=4\) cm (1)
\(\Rightarrow\dfrac{ED}{AB}=\dfrac{CD}{BC}\Rightarrow ED=\dfrac{AB.CD}{BC}=\dfrac{6.5}{10}=3\)cm (2)
Thay (1) ; (2) vào (*) ta được :
\(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{3.4}{48}=\dfrac{12}{48}=\dfrac{1}{4}\)
Cho tam giác ABC vuông tại A đường cao AH phân giác AD biết BC = 5 cm DC = 20 cm Tính độ dài AB AC HB HC và diện tích tam giác AHD
DB/DC=AB/DC
DB+DC=BC
=>DB=5-20=-15 là sai đề rồi bạn
Cho tam giác ABC vuông tại A đường cao AH đường phân giác AD vẽ HN vuông góc với AC cho biết AB = 21 cm,AC=28 cm.Tính AH BD DC
a) Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có : AH2 = BH . CH
=> CH = AH2/BH = \(\dfrac{162}{25}=10,24\)
BC = BH + CH = 25 + 10,24 = 35,24
- Theo hệ thức liên hệ giữa cạnh góc vuông và hình chéo , ta có :
AB2 = BH.BC
=> AB\(\sqrt{\left(BH.BC\right)}\)
= \(\sqrt{\left(25.35,24\right)}\)
= \(\sqrt{881=29,68}\)
AC2 = HC.BC
=> AC = \(\sqrt{\left(CH.BC\right)}\)
= \(\sqrt{\left(10,24.35,24\right)=}\sqrt{\left(360,9\right)=18,99}\)
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD
cho tam giác abc vuông tại b, phân giác ad (d thuộc bc). Qua d kẻ đường thẳng vuông góc với ac tại f.
a, tính bc biết ab=3cm,ac=5cm
b, CM:tam giác bad= tam giác fad
c, CM: ad là trung trực của bf; bd<dc